xác định n thuộc Z để 6n2+3-2chia hết cho 2n-1
tìm n thuộc Z để 2n^2-n+2chia hết cho 2n+1
ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)=\(n-1+\frac{3}{2n+1}\)
để 2n^2 -n+2 chia hết cho 2n+1 thì 3 phải chia hết cho 2n+1 <=> 2n+1 thuộc các ước nguyên của 3
Ư(3)={-3;-1;1;3)
ta có bảng:
2n+1 | -3 | -1 | 1 | 3 |
n | -2 | -1 | 0 | 1 |
Vậy với x={-2;-1;0;1) thì 2n^2-n+2 chia hết cho 2n+1
bài 1 tìm n thuộc Z
a,3n+2chia hết cho 2n--1
b.n+3 chia hết cho n-7
c,3n+2 chia hết cho n-4
d3n+1 chia ht cho 2n-1
e,3-n chia hết cho 2-3n
f,18n+3chia ht cho 7
g 16n-2chia ht cho 5
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
\(c,\frac{3n+2}{n-4}=\frac{3n-12+14}{n-4}=\frac{3(n-4)+14}{n-4}=3+\frac{14}{n-4}\)
=> 14 chia hết cho n - 4
=> n - 4 \(\inƯ(14)\)= \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Lập bảng :
n - 4 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 5 | 3 | 6 | 2 | 11 | -3 | 18 | -10 |
Tìm n thuộc N để
a)n^2chia hết cho n-3
b)2n+1chia hết cho n^2-3
a) Ta có : \(n^2⋮n-3\)
\(\Rightarrow n^2-3^2+3^2⋮n-3\)
\(\Rightarrow\left(n^2-3^2\right)+3^2⋮n-3\)
\(\Rightarrow\left(n-3\right)\left(n+3\right)+3^2⋮n-3\)(sử dụng hằng đẳng thức trừ 2 bình phương của 2 số)
Vì \(\left(n-3\right)\left(n+3\right)⋮n-3\)
\(\Rightarrow3^2⋮n-3\)
\(\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\inƯ\left(9\right)\)
\(\Rightarrow n-3\in\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng xét các trường hợp :
\(n-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(n\) | \(4\) | \(2\) | \(6\) | \(0\) | \(12\) | \(-6\) |
Vậy các \(n\inℕ\)thỏa mãn là : 4;2;6;0;12
b, thì mk chưa xem qua nhưng a mk làm đc
Ta có \(n^2⋮n-3\)
\(n^2-3^2+3^2⋮n-3\)
\(\left(n^2-3^2\right)+3^2⋮n-3\)
\(\left(n-3\right)\left(n+3\right)+3^2⋮n-3\)
Vì \(\left(n-3\right)\left(n+3\right)⋮n-3\)
Nên \(\Rightarrow3^2⋮n-3\)
và 32=9
\(\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\inƯ\left(9\right)=\left\{\mp1;\mp3;\mp9\right\}\)
Ta có bảng
n-3 | -1 | 1 | -3 | 3 | -9 | 9 |
n | 2 | 4 | 0 | 6 | -6 | 12 |
Bài 1 :
a) Xác định a để đa thức 10x2 -7x + a chia hết cho đa thức 2x - 3 ?
b) Tìm n thuộc Z để 2n2 + 5n - 1 chia hết cho 2n - 1
Tìm n thuộc Z:
a) 3n+2chia hết cho 2n-1
b) n-1 chia hết cho n+5 và n+5 chia het cho n-1
Các bạn nhớ ghi lời giải chi tiết nhé !!!!!
Làm câu b trước, câu a đánh máy mệt lắm
n-1 chia hết cho n+5. n+5 chia hết cho n-1
Suy ra 2 số này là 2 số đối nhau khác 0
2 số đối nhau có tổng =0
(n+5)+(n-1)=0
n+5+n-1=0
2n+4=0
2n=-4
n=-2
tìm n thuộc Z để 2n^2-n-1 chia hết cho 2n+3
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
Cho n thuộc Z để 2n2 - n - 1 chia hết cho 2n + 3
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm số tự nhiên n để:
a.5n+2chia hết cho 9-2n
b.6n+9chia hết cho 4n-1
a/ 5n+2\(⋮\)9-2n
<=> 2(5n+2)\(⋮\)9-2n
<=> 10n+4\(⋮\)9-2n
<=> 10n-45+49\(⋮\)9-2n
<=> 49-(45-10n)\(⋮\)9-2n
<=> 49-5(9-2n)\(⋮\)9-2n
<=> 49\(⋮\)9-2n => 9-2n=(-49,-7,-1,1,7,49)
9-2n | -49 | -7 | -1 | 1 | 7 | 49 |
n | 29 | 8 | 5 | 4 | 1 | -20 (loại) |
ĐS: n=(1,4,5,8,29)
b/ Làm tương tự
a,5n+2 chia hết cho 9-2n
=>2(5n+2)+5(9-2n) chia hết cho 9-2n
=>10n+4+45-10n chia hết cho 9-2n
=>49 chia hết cho 9-2n
=>9-2n E Ư(49)={1;-1;7;-7;49;-49}
=>2n E {8;10;2;-16;-40;58}
=>n E {4;5;1;-8;-20;29}
Mà n là stn
=>n E {4;5;1;29}
b, 6n+9 chia hết cho 4n-1
=>2(6n+9)-3(4n-1) chia hết cho 4n-1
=>12n+18-12n+3 chia hết cho 4n-1
=>21 chia hết cho 4n-1
=>4n-1 E Ư(21)={1;-1;3;-3;7;-7;21;-21}
=>4n E {2;0;4;-2;8;-6;22;-20}
=>n E {1/2;0;1;-1/2;2;-3/2;11/2;-5}
Mà n là stn
=> n E {0;1}
sửa mấy câu cuối của a
=>2n E {8;10;2;16;-40;58}
=>n E {4;5;1;8;-20;29}
Mà n là stn
=>n E{4;5;1;8;29}