Chứng minh rằng nếu n là số nguyên dương thì \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)chia hết cho 6
chứng minh rằng nếu n là số nguyên dương thì:
2(1^2019+2^2019+3^2019+...+n^2019) chia hết cho n(n+1)
Xin chào bạn ! Mình là youtuber PUBG Takaz đây !
chứng minh rằng với mọi sô nguyên dương n thì 3^n+3=3^n+1+2^n+3+2^n+2 chia hết cho 6
chứng minh rằng với mọi số nguyên dương n thì: 3n+3+2n+3-3n+2+2n+2 chia hết cho 6
\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)
\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)
\(=6.3^{n+1}+6.2^{n+1}\)
\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)
Chứng minh rằng: Mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\) ∀n∈N
Vậy ...
\(=3^n.9-2^n.4+3^n-2^n\)
\(=10.3^n-5.2^n\)
\(=10.\left(3^n-2^n\right)\)
\(\Leftrightarrow⋮10̸\)
Chứng minh rằng với mọi số nguyên dương n thì:
3n+2 - 2n+2 +3n - 2n chia hết cho 10.
b)3n+3 +3n+1 +2n+3+2n+2 chia hết cho 6
a_)3n+2 - 2n+2 +3n - 2n
=(3n+2+3n)+(-2n+2-2n)
=(3n.32+3n.1)+(-2n.22-2n+1)
=3n.(9+1)-2n.(4+1)
=3n.10-2n.5
ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)
=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n
chứng minh rằng :với mọi số nguyên dương n thì : (3^n+2)-(2^n+2) + ( 3^n) -(2^n) chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10