Chứng minh rằng: n2 -1 ⋮n với n là số tự nhiên (n>0)
Chứng minh rằng: n2 -1 \(⋮\)n với n là số tự nhiên (n>0)
vì \(n^2⋮n\)
mà \(n^2-1⋮n\)
=>\(1⋮n\)
mà n là số tự nhiên => n=1 ( đề phải là tìm n )
Chứng minh rằng: n.(n+2017) là số chẵn với mọi số tự nhiên n
- Nếu n là số chẵn thì n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
- Nếu n là số lẻ thì n + 2017 là số chẵn => n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
Vậy n.(n + 2017) là số chẵn với mọi số tự nhiên n.
Xét 2 trường hợp:
Nếu n lẻ thì n + 2017 sẽ là một số chẵn
Mà lẻ nhân chẵn sẽ cho 1 số chẵn nên n.(n+2017) chẵn
Nếu n chẵn thì n + 2017 sẽ là một số lẻ
Mà chẵn nhân lẻ sẽ cho 2 số chẵn nên n.(n + 2017 ) chẵn
Vậy với mọi số tự nhiên n thì n.(n+2017) chẵn
Nhớ k cho mình nhé! Thank you!!!
ta có \(n\cdot\left(n+2017\right)\)
TH1: nếu \(n⋮̸2\)
\(n+2017⋮2\)
\(n\cdot\left(n+2017\right)⋮2\)
TH2: Nếu \(n⋮2\)
\(n\cdot\left(n+2017\right)⋮2\)
Vậy \(n\cdot\left(n+2017\right)\)là số chẵn với mọi số tự nhiên n
chứng minh rằng: n(n+8)(n+13) chia hết cho 3 với n là số tự nhiên
chịu bài này khó quá
ai biết đc...
nếu muốn
chứng minh rằng
3n+2+3n+1+2n+3+2n+2 chia hết cho 6 với n là số tự nhiên khác 0
\(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^n\times3\times4+2^n\times4\times3\)
\(=12\left(3^n+2^n\right)\)
vì 12 chia hết cho 6 nên 3n+2+3n+1+2n+3+2n+2 chia hết cho 6
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì 3n + 1 và 4n + 2 là các số nguyên tố cùng nhau.
Gỉa sử n=3=>3n+1=3.3+1=9+1=10
4n+2=4.3+2=12+2=14
mà (10,14)=2
=>Vô lí
Bạn xem lại đề nha.
a/ Chứng minh rằng : Với mọi số tự nhiên n ∈ N, A = (n + 19931994) (1 + 19941993) chia hết cho 2
b/ Chứng minh rằng : Tích 2 số lẻ là 1 số lẻ. Từ đó ta biết : B = 20022001 - 20012000
CHỨNG MINH RẰNG n^3+9n^2+23+15 CHIA HẾT CHO 18 VỚI n LÀ SỐ TỰ NHIÊN LẺ
\(n^3+9n^2+23n+15=n^3+n^2+8n^2+8n+15n+15\)
\(=n^2\left(n+1\right)+8n\left(n+1\right)+15\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+8n+15\right)=\left(n+1\right)\left(n^2+5n+3n+15\right)\)
\(=\left(n+1\right)\left[n\left(n+5\right)+3\left(n+5\right)\right]=\left(n+1\right)\left(n+5\right)\left(n+3\right)\)
Vì n là số tự nhiên lẻ nên \(\left(n+1\right)\left(n+3\right)\left(n+5\right)\)là tích ba số chẵn liên tiếp nên chia hết cho 48 ko phải 18 nhé :D
Cho hai đa thức A = 5x + y + 1 và B = 3x - y + 4 . Chứng minh rằng nếu x = m và y = n với m và n là một số tự nhiên thì tích A . B là một số chẵn
2 trường hợp:
1,m;n cùng dấu.
2,m;n khác dấu.
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn