Cho biểu thức : A = 2 (92009 + 92008 + .... + 9 + 1 )
CMR : A bằng tích 2 số tự nhiên liên tiếp
cho biểu thức A=\(2\left(9^{2009}+9^{2008}+...+9+1\right)\)
chứng minh A bằng tích của hai số tự nhiên liên tiếp
A/2 = 1+9+9^2+....+9^2009
9/2A = 9+9^2+9^3+....+9^2010
4A=9/2A-A/2= (9+9^2+9^2+....+9^2010) - (1+9+9^2+....+9^2009) = 9^2010 - 1 = (9^1005-1).(9^1005+1)
=> A = (9^1005-1)/2 . (9^1005+1)/2
Ta thấy 9^1005-1 và 9^1005+1 là 2 số chẵn liên tiếp nên (9^1005-1)/2 và (9^1005+1)/2 là 2 số tự nhiên liên tiếp
=> ĐPCM
k mk nha
cho biểu thức :\(A=2\left(9^{2009}+9^{2008}+...+9+1\right)\). Chứng minh rằng A là tích của 2 số tự nhiên liên tiếp.
cho biểu thức: \(A=2\left(9^{2009}+9^{2008}+...+9+1\right)\). Chứng minh rằng A là tích của 2 số tự nhiên liên tiếp
a/CMR tích của 2 số tự nhiên liên tiếp chia hết cho 2
b/CMR tích của 3 số tự nhiên liên tiếp chia hết cho 6
c/CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
d/CMR tích của 5 số tự nhiên liên tiếp chia hết cho 120
đâu phải tích của 2 số đều chia hết cho 2 đâu
sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!
CMR:
a/ Tích của 2 số tự nhiên liên tiếp bằng 600
b/ Tích của 3 số tự nhiên liên tiếp bằng 2730
600 = 23.3.52 = (23.3).52=24.25
2730 = 2.3.5.7.13 = 13.(2.7).(3.5)=13.14.15
CMR:
a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6
CMR
a, Tích của hai số tự nhiên liên tiếp chia hết cho 2
b,Tích của 3 số tự nhiên liên tiêp chia hết cho 6
c,Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d, Tích của 5 số tự nhiên liên tiếp chia hết cho 120
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
#)Giải :
a) Vì trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => Tích đó chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 ( a thuộc N )
Tích của chúng là : B = a x (a+1) x (a+2)
Vì trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 2
Ta chứng minh tích B chia hết cho 2 : Gồm 2 trường hợp :
+) Trường hợp 1 : a chia hết cho 2 ( a là số chẵn ) => B chia hết cho 2
+) Trường hợp 2 : a chia 2 dư 1 ( a là số lẻ ) => a + 1 chia hết cho 2 => B chia hết cho 2
Vậy tích B chia hết cho 2 (1)
Tiếp tục chứng minh tích B chia hết cho 3 : Gồm 3 trường hợp :
+) Trường hợp 1 : a chia hết cho 3 => B chia hết cho 3
+) Trường hợp 2 : a chia 3 dư 1 => a + 2 chia hết cho 3 => B chia hết cho 3
+) Trường hợp 3 : a chia 3 dư 2 => a + 1 chia hết cho 3 => B chia hết cho 3
Vậy tích B chia hết cho 3 (2)
Và vì ( 2;3 ) = 1 suy ra B chia hết cho 2 x 3 = 6
Vậy tích của 3 số tự nhiên liên tiêp chia hết cho 6
CMR
a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120
a) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 12
b) CMR tích của 5 số tự nhiên liên tiếp thì chia hết cho 60
c) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
CMR :
a) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2 ?
b) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 ?
chi tiết nha bạn
a) Ta thấy cứ 2 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 nên tích của chúng phải chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Để tích 3 số tự nhiên liên tiếp chia hết cho 3 thì phải có 1 số chia hết cho 3
TH1: a chia hết cho 3, vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
TH2: a chia 3 dư 1=> a+2 chia hết cho 3 => tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
TH3: a chia 3 dư 2 => a+1 chia hết cho 3 => tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3