Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Nguyễn
Xem chi tiết
Nguyễn Anh Quân
22 tháng 11 2017 lúc 15:33

A/2 = 1+9+9^2+....+9^2009

9/2A = 9+9^2+9^3+....+9^2010

4A=9/2A-A/2= (9+9^2+9^2+....+9^2010) - (1+9+9^2+....+9^2009) = 9^2010 - 1 = (9^1005-1).(9^1005+1)

=> A = (9^1005-1)/2 . (9^1005+1)/2

Ta thấy 9^1005-1 và 9^1005+1 là 2 số chẵn liên tiếp nên (9^1005-1)/2 và (9^1005+1)/2 là 2 số tự nhiên liên tiếp

=> ĐPCM

k mk nha

lebaoduy
4 tháng 10 2019 lúc 19:51

cục xì lầu ông bê lắp

le huu phuoc
Xem chi tiết
le vi dai
Xem chi tiết
nguyen tran phuc nguyen
Xem chi tiết
vu tien dat
21 tháng 11 2014 lúc 20:31

đâu phải tích của 2 số đều chia hết cho 2 đâu

MAI HUONG
21 tháng 11 2014 lúc 20:38

sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!

Yu
Xem chi tiết
Nguyễn Ngọc Quý
18 tháng 10 2015 lúc 11:27

600 = 23.3.52 = (23.3).52=24.25

2730 = 2.3.5.7.13 = 13.(2.7).(3.5)=13.14.15            

_____________
18 tháng 10 2015 lúc 11:26

sao lại là chứng minh 

Nguyễn Thị Duyên
Xem chi tiết
LƯU THIÊN HƯƠNG
Xem chi tiết

a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2

Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
 +Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
 +Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
 +Nếu a chia hết cho 3 => T chia hết cho 3
 +Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
 +Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau 
=> T chia hết cho 2.3 = 6

T.Ps
10 tháng 6 2019 lúc 9:06

#)Giải :

a) Vì trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => Tích đó chia hết cho 2 

b) Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 ( a thuộc N )

Tích của chúng là : B = a x (a+1) x (a+2)

Vì trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 2

Ta chứng minh tích B chia hết cho 2 : Gồm 2 trường hợp :

+) Trường hợp 1 : a chia hết cho 2 ( a là số chẵn ) => B chia hết cho 2

+) Trường hợp 2 : a chia 2 dư 1 ( a là số lẻ ) => a + 1 chia hết cho 2 => B chia hết cho 2 

Vậy tích B chia hết cho 2 (1)

Tiếp tục chứng minh tích B chia hết cho 3 : Gồm 3 trường hợp :

+) Trường hợp 1 : a chia hết cho 3 => B chia hết cho 3

+) Trường hợp 2 : a chia 3 dư 1 => a + 2 chia hết cho 3 => B chia hết cho 3

+) Trường hợp 3 : a chia 3 dư 2 => a + 1 chia hết cho 3 => B chia hết cho 3

Vậy tích B chia hết cho 3 (2) 

Và vì ( 2;3 ) = 1 suy ra B chia hết cho 2 x 3 = 6 

Vậy tích của 3 số tự nhiên liên tiêp chia hết cho 6

mai viet thang
Xem chi tiết
Trần Mai Trang
Xem chi tiết
Tên bạn là gì
Xem chi tiết
Đặng thị Mỹ Linh
12 tháng 7 2015 lúc 8:11

a) Ta thấy cứ 2 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 nên tích của chúng phải chia hết cho 2

b) Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2

Để tích 3 số tự nhiên liên tiếp chia hết cho 3 thì phải có 1 số chia hết cho 3

TH1: a chia hết cho 3, vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

TH2: a chia 3 dư 1=> a+2 chia hết cho 3 => tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

TH3: a chia 3 dư 2 => a+1 chia hết cho 3 =>  tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 3