cho a,b nguyên dương sao cho \(a^2+b^2⋮ab\)
cmr:\(M=\frac{8ab}{a^2+b^2}\) là số chính phương
Cho a,b là các số nguyên dương và A =\(\frac{a^2+b^2}{ab+1}\)là số nguyên .cmr A là số chính phương.
Cho 2 số nguyên dương lẻ a vs b sao cho \(a^b.b^a\)là số chính phương. CMR : ab là số chính phương
1 .cho a,b là 2 số nguyên dương sao cho\(A=\frac{a^2+b^2}{ab+1}\) là số nguyên , chứng minh A là số chính phương
2.giả sử x , y là các số nguyên dương sao cho\(B=\frac{x^2+y^2+6}{xy}\) là một số nguyên . chứng minh B là số lập phương
Cho a,b là 2 số nguyên dương sao cho \(A=\frac{a^2+b^2}{ab+1}\) nguyên. Chứng minh rằng A là số chính phương.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Cho a,b là các số nguyên dương.
Hãy tìm a,b sao cho:
\(\frac{a^2+b^2}{ab+1}\)là một SỐ CHÍNH PHƯƠNG.
Cậu chỉ cần đổi đề bài thành tìm a,b sao cho A là số nguyên là được.
Link chứng minh điều đó ở đây
https://diendantoanhoc.net/topic/71455-cho-ab-nguyen-d%C6%B0%C6%A1ng-ch%E1%BB%A9ng-minh-afraca2b2ab1-la-s%E1%BB%91-chinh-ph%C6%B0%C6%A1ng-n%E1%BA%BFu-a-nguyen/
Gắt vậy :) IMO 1988 :) vào TKHĐ của mình để xem hình ảnh
Cho các số nguyên dương a,b,n thỏa mãn
\(\frac{a}{b}\)=\(\frac{a^2+n^2}{b^2+n^2}\)
Chứng minh ab là số chính phương
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
Cho a;b là 2 số nguyên dương sao cho \(A=\frac{a^2+b^2}{ab+1}\) nguyên . Chứng minh rằng A là số chính phương
Nhân tài đất Việt đâu hết rồi ???????
Số chính phương là số gì thế anh
anh noi thì em mới biết giải
wtf
số chính phương mà ko bt là j thì con cx lạy bố
bố ăn j mà thông minh thế
bố liệu có bt lm ko
kiến thức lớp 6