Cho a/m =b/n=c/p= -4
Tính M= -a^3+3b^3-2c^3/ m^3-3n^3+2p^3
1.Tìm x , y , z biết:
x : y : z = 3 : 4 : 5 và 2x^2 + 2y^3 - 3z^2 = -100
2.Tìm a^1 ; a^2 ; ...; a^9 biết:
\(\frac{a^1-1}{9}=\frac{a^2+2}{8}=\frac{a^3-3}{7}=...=\frac{a^9-9}{1}\)và a^1 + a^2 +...+a^9 = 90
3,Cho a/m = b/n = c/p = 4
Tính \(\frac{a+b+c}{m+n+p}\)
\(\frac{a-3b+2c}{m-3n+2p}\)
1)Ta có ; x:y:z=3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{3^2}=\frac{y^3}{4^3}=\frac{z^2}{5^2}\Rightarrow\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}\)
áp đụng tính chất của dãy tỉ số bằng nhau và 2x2+2y3-3z2=-100
Ta được : \(\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}=\frac{2x^2+2y^3-3z^2}{18+128-75}=\frac{-100}{71}\)
CÒN LẠI BẠN TỰ TÍNH NHÉ
2)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^1-1}{9}=\frac{a^2+2}{8}=...=\frac{a^9-9}{1}\)
=\(\frac{a^1-1+a^2-2+...+a^9-9}{9+8+...+1}=\frac{\left(a^1+a^2+...+a^9\right)-\left(9+8+...+1\right)}{9+8+...+1}\)
=\(\frac{90-45}{45}=\frac{45}{45}=1\)
suy ra:\(\frac{a^1-1}{9}=1\Rightarrow a^1=10\)tương tự ta có: a1=a2=...=a9=10
3) ta có a/m=b/n=c/p=4=\(\frac{a+b+c}{m+n+p}\)
=> a=4m; b=4n;c=4p
bạn thay vào là tính ra thôi mà
ĐÁP SỐ : CẢ HAI BIỂU THỨC ĐÓ ĐỀU = 4
2.Tìm a^1; a^2 ; ... ; a^9: \(\frac{a^1-1}{9}=\frac{a^2+2}{8}=...=\frac{a^9-9}{1}\) và a^1 + a^2 +...+ a^9 = 90.
3. Cho a / m = b / n = c / p = 4. Tính :\(\frac{a+b+c}{m+n+p}và\frac{a-3b+2c}{m-3n+2p}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a^1-1}{9}=\frac{a^2+2}{8}=...=\frac{a^9-9}{1}=\frac{a^1+a^2+...+a^9-1+2-3+4-5+6-7+8-9}{9+8+7+6+5+4+3+2+1}=\frac{90-5}{45}=\frac{17}{9}\)
Rồi bạn tự tính tiếp nhá!
Cho a/3=b/4=c/5
Tính biểu thức M=a+b-c/2a+3b-2c
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
CHO các số : a,b,c,m,n,p thỏa mãn :
\(\frac{a}{m}\)= \(\frac{b}{n}\)=\(\frac{c}{p}\) =\(-\)4
Tính giá trị của biểu thức :\(\frac{2a^3-3b^3-4c^3}{2m^3+3n^3+4p^3}\)
a) Cho a+b+c=0 c/m: a^3+a^2c-abc+b^2c+b^3=0
b) Cho a+b+c=2p c/m: 2bc+b^2+c^2-a^2=4p(p-a)
(không được sử dụng hằng đẳng thức)
Cho các số thực a, b, c thỏa mãn:
(2a + 2b + 2c)3 = 12 + (2a + b - c) 3+ (2b + c - a)3+ (2c + a - b) 3
Chứng minh rằng (a + 3b)(b + 3c)(c + 3a) = 4
Giúp mk nhanh vs ạ
Cho các số a, b, c, m, n, p thỏa mãn: a/m=b/n=c/p=-4.
Tính giá trị biểu thức M = -a^3 + 3b^3 - 2c^3
Giúp mk nha các bạn ♡♡♡♡
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
Lời giải:
Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)
Với (1):\(\Leftrightarrow ab+bc+ac=0\)
\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)
Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)
\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)
Vậy...........
Lời giải:
Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)
Với (1):\(\Leftrightarrow ab+bc+ac=0\)
\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)
Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)
\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)
Vậy...........