GTLN của A=1/(x^2+y^2)+3/4xy
với x+y=1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
bài 1 cho x, y thỏa mãn x+2y=1 tìm GTLN của P=4xy
bài 2 cho x,y,z>0 thỏa mãn x+y+z =4 CM : x+y>=xyz
bài 3: tìm GTLN của A= x^2 /(x^4+4)
bài 4:tìm GTLN M=x-2√x-5
pạn nào lm đc mún j mh xin hậu tạ :v :v
b1: x+2y=1 => x=1-2y
P=4xy=4y(1-2y)=4y-8y2
Ta có: y2>=0(với mọi x)
=>8y2>=0(với mọi x)
=>-8y2<=0(với mọi x)
=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)
Do đó, GTLN của P là 4y khi:y=0
Vậy GTLN của P là 0
b3: Ta có: x^4>=0(với mọi x)
=>x^4+4>=4(với mọi x)
=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)
Do đó, GTLN của A là x^2/4 khi x=0
Vậy GTLN của A là 0 tại x=0
b4:\(M=x-2.\sqrt{x-5}\)
Ta có: \(\sqrt{x-5}\)>=0(với mọi x)
=>2.\(\sqrt{x-5}\)>=0(với mọi x)
=>-2.\(\sqrt{x-5}\)<=0(với mọi x)
=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)
Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0
x-5=0
x=0+5=5
Vậy GTLN của M là 5 tại x=5
Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:
P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]
=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)
Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)0
=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)
Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)
bài 4 yêu cầu phải là tìm GTNN nhé
x-2\(\sqrt{x}\)-5= \(\left(\sqrt{x}\right)^2\)-2.\(\sqrt{x}\).1+\(1^2\)-\(1^2\)-5
=\(\left(\sqrt{x}-1\right)^2\)-6
Ta có \(\left(\sqrt{x}-1\right)^2\)\(\ge\)0
=>\(\left(\sqrt{x}-1\right)^2\)-6 \(\ge\)-6
Vậy M đạt giá trị nhỏ nhất là -6 dấu = xảy ra khi \(\sqrt{x}\)-1=0=> x=1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .
a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)
\(\Leftrightarrow1\le x+y\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)
mk nghỉ đề này không phải của lớp 8 đâu phải không :)
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
dhgxkkkkkkkkkkkkkkkkkkkkk
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Bài 1:
\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)
\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
1. Trg mp hệ tọa độ Oxy , cho A(-1;0),B(3;-2) . Đỉnh C của tam giác ABC vuông tại A nằm trên đt nào ?
2. Cho các số thực x,y thỏa mãn \(0< x,y\le1\) và x+y= 4xy . Tìm GTLN của biểu thức \(M=x^2+y^2-7xy\)
3. Trên hệ trục tọa độ Oxy cho tam giác ABC . Biết B (3;-2),C(-1;1) và AB=2AC. Tìm tọa độ D là chân đg phân giác trg của tam giác ABC
Help me !