2n+2 chia hết 2n+1
Tìm n E N để
a) 2n + 1 chia hết co 6 - n
b) 2n + 2 chia hết cho 2n - 1
c) 4n - 5 chia hết cho 2n - 1
d) n\(^2\)+ 2n + 7 chia hết cho n + 2
e) n^2 + 1 chia hết cho n - 1
f) 3n + 1 chia hết cho 11 - 2n
h) 3n - 6 chia hết cho 2n - 1
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
(2n^2+ 7n-2)chia hết cho (2n -1)
tìm n thuộc z để ( 2n ^2 +7n -2) chia hết cho (2n -1)
Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)
Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Sau đó tìm n
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
b) 2n-4 chia hết cho n+2
c) 6n+4 chia hết cho 2n+1
d) 3-2n chia hết cho n+1
e)n+3 chia hết cho n-1
f) 2n-1 chia hết cho n+2
b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2
<=>2(n+2)-8 chia het cho n+2
<=>8 chia hết cho n+2
<=> n+2 thuộc ước của 8
còn lại tự tính nha
những câu hỏi khác cũng tương tự
tick nha
Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)
Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)
Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)
Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)
a) 2n-1 chia hết cho n+1
b) 2n+5 chia hết cho n-1
c) n-6 chia hết cho 2-n
d) 2n+3 chia hết cho 1-n
e) 3n+1 chia hết cho 11-2n
a) 2n - 1 chia hết cho n + 1
=> 2n + 2 - 3 chai hết cho n + 1
=> 2.(n + 1) - 3 chia hết cho n + 1
=> 3 chai hết cho n + 1
=> n + 1 thuộc Ư(3) = {-1;1-3;3}
=> n = {-2;0;-4;2}
2n-1 chia hết cho n+1
=>2(n+1)-3 chia hết n+1
=>3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;3;-1;-3}
Với n-1=1 =>n=2
Với n-1=3 =>n=4 (loại)
Với n-1=(-1) =>n=0
Với Với n-1=(-3) =>n=(-2)
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!