Chứng tỏ A = 5^2014 + 5^2015+5^2016 chia cho 31
Chứng minh: 52016 +52015+52014 chia hết cho 31
5^2016 + 5^2015 + 5^2014 = 5^2014 ( 5^2 + 5 + 1) = 5^2014 . ( 25 + 5 + 1) = 5^2014 . 3 1 chia hết cho 31
52016 +52015+52014
=52014.52+52014.5+52014.1
=52014.(52+5+1)
=52014.31
=>52016 +52015+52014 chia hết cho 31
sao lúc nào trieu dang trước thang Tran sau mà thang Tran cũng được li-ke hết vậy
Cho A= \(1+5+5^2+5^3+5^4+......+5^{2014}+5^{2015}\)
Chứng tỏ rằng A chia hết cho 31
Ta có A = \(1+5+5^2+...+5^{2015}\)
=> 5A = \(5+5^2+5^3+...+5^{2016}\)
=> 5A - A = \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)
=> 4A = \(5^{2016}-1\)
=> A = \(\left(5^{2016}-1\right):4\)
=> A chia hết cho 31
cmr:[5^2016+5^2015+5^2014]chia hết cho 31
52016+52015+52014=52014(52+5+1)=52014.31 chia hết cho 31
=>đpcm
Chứng Minh Rằng:
B=52016 +52015+52014chia hét cho 31
Chứng tỏ :
a) 5^2017+5^2016+5^2015 chia hết cho 31
b) 1+7+7^2+7^3+...+7^101 chia hết cho 8
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
Chứng tỏ : 52016 + 5 2015 + 5 2014
Chia hết cho 31
\(5^{2016}+5^{2015}+5^{2014}\)
\(=5^{2013}.\left(5^3+5^2+5\right)\)
\(=5^{2013}.155\)
\(=5^{2013}.31.5\) chia hết cho 31
\(5^{2016}+5^{2015}+5^{2014}\)
\(=5^{2014}\times\left(5^2+5+1\right)\)
\(=5^{2014}\times31\)
Vậy \(5^{2016}+5^{2015}+5^{2014}\) chia hết cho 31
Chứng tỏ rằng
a,52016 + 52015 + 52014 chia hết cho 31
b,1+ 7+ 72+ 73+......+ 7101 chia hết cho 8
c,439 + 440 + 441 chia hết cho 28
a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31
b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8
=8x(1+7^2+...7^100)=>chia hết cho 8
c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28
a/ 52016+52015+52014=52014(52+5+1)=31.52014 => Chia hết cho 31
b/ 1+7+72+73+...+7101 Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:
(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)
= (1+7)(1+72+...+7100)=8.(1+72+...+7100) => Chia hết cho 8
c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28
=> Chia hết cho 28
a/ 52016+52015+52014=52014(52+5+1)=31.52014 => Chia hết cho 31
b/ 1+7+72+73+...+7101 Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:
(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)
= (1+7)(1+72+...+7100)=8.(1+72+...+7100) => Chia hết cho 8
c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28
=> Chia hết cho 28
Cho A =5+5^2+5^3+5^4+...+5^2014+5^2015+5^2016
a) Tính A
b) CMR: A chia hết cho 6
c) CMR: A chia hết cho 31
Chứng tỏ rằng:
\(^{5^{2017}+5^{2016}+5^{2015}}\) chia hết cho 31
Giúp mk với các bạn
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)
52017+52016+52015
5^2015.(5^2+5+1)
5^2015.31 chia hết cho 31
=> Tổng trên chia hết cho 31