Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm thị hiểu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2018 lúc 5:06

Chọn A

y ' = y = 4 x 3 - 4 m 2 x

Hàm số có 3 điểm cực trị khi m ≠ 0

Khi đó 3 điểm cực trị là

Gọi I là tâm đường tròn ngoại tiếp( nếu có) của tứ giác ABOC .

Do tính chất đối xứng , ta có

A,O,I thẳng hàng

  ⇒ A O là đường kính của đường tròn ngoại tiếp( nếu có) của tứ giác ABOC

Kết hợp điều kiện m = ± 1  ( thỏa mãn)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 4 2019 lúc 5:42

Phương pháp:

+) Tìm tọa độ các điểm cực trị của đồ thị hàm số theo tham số m.

+) Dựa vào tính chất hàm trùng phương và tính chất tứ giác nội tiếp để tìm m.

Cách giải:

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2021 lúc 20:28

a. Hàm có 3 cực trị \(\Rightarrow m< 0\)

\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)

Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu

Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy

Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\)  là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)

\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)

Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)

\(\Rightarrow\) I trùng trung điểm BC

\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)

Nguyễn Việt Lâm
13 tháng 12 2021 lúc 20:31

b.

Từ câu a ta thấy khoảng cách giữa 2 cực đại là:

\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)

Nguyễn Việt Lâm
13 tháng 12 2021 lúc 21:34

Opps, phần a lý luận bị nhầm lẫn.

Từ việc IB=IC, và trung điểm BC thuộc Oy ko thể dẫn tới kết luận I là trung điểm BC (vì I, B, C ko thẳng hàng)

Do đó phải sửa lại:

\(\left\{{}\begin{matrix}\overrightarrow{IB}=\left(-\sqrt{-\dfrac{m}{2}};\dfrac{-2m^2-3m}{4}\right)\\\overrightarrow{IO}=\left(0;\dfrac{3m}{4}\right)\end{matrix}\right.\)

\(IB=IO\Rightarrow-\dfrac{m}{2}+\left(\dfrac{-2m^2-3m}{4}\right)^2=\left(\dfrac{3m}{4}\right)^2\)

\(\Leftrightarrow m^4+3m^3-2m=0\)

\(\Leftrightarrow m\left(m+1\right)\left(m^2+2m-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=-1\\m=-1+\sqrt{3}\left(loại\right)\\m=-1-\sqrt{3}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2018 lúc 7:49

Ta có đạo hàm 

Để hàm số có 3 điểm cực trị khi và chỉ khi m≠0.

 Khi đó, tọa độ 3 điểm cực trị là:  A( 0; m4+ 3) ; B( m; 3)  và C( -m; 3) là ba điểm cực trị.

Vì yA> yB= yC n ên yêu cầu bài toán; tứ giác ABOC nội tiếp đường tròn ( C)

Và A B = A C O B = O C  suy ra OA là đường trung trực của đoạn thẳng BC.

 Suy ra OA là đường kính của đường tròn C ⇒ O B → . A B → = 0           ( 1 )  

Mà 

suy ra 

 

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2019 lúc 14:48

Đáp án C

Phương pháp giải:

Tìm tọa độ các điểm cực trị của hàm số trùng phương sau đó dựa vào tính chất của tứ giác nội tiếp đường tròn để tìm được tham số m

Lời giải:

Ta có

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 15:08

Đáp án B

Tam giác có tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp trùng nhau là tam giác đều.

Bài toán trở thành tìm số các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác đều.

Trong sách Công phá toán 3 tác giả đã đề cập đến công thức tổng quát cho bài toán này.

Để thỏa mãn yêu cầu trên thì b 3 a = − 24 ⇔ − 2 m − 1 3 1 = − 24 ⇔ m − 1 3 = 3  .

Phương trình có duy nhất một nghiệm nên ta chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2017 lúc 11:17

Đáp án B

Tam giác có tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp trùng nhau là tam giác đều.

Bài toán trở thành tìm số các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác đều.

Trong sách Công phá toán 3 tác giả đã đề cập đến công thức tổng quát cho bài toán này.

Để thỏa mãn yêu cầu trên thì b 3 a = − 24 ⇔ − 2 m − 1 3 1 = − 24 ⇔ m − 1 3 = 3  .

Phương trình có duy nhất một nghiệm nên ta chọn B

Nguyễn Huỳnh Đông Anh
Xem chi tiết
Võ Đăng Khoa
23 tháng 4 2016 lúc 14:37

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)