Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoa
Xem chi tiết
phan thi thuy tien
Xem chi tiết
Cassie Natalie Nicole
Xem chi tiết
le hung
Xem chi tiết
Manhh Manhh
Xem chi tiết
Thu Thao
17 tháng 12 2020 lúc 22:11

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

Nguyễn Thị Hồng Ánh
Xem chi tiết
Bùi Quang Khánh
Xem chi tiết
Trần Hồ Hoài An
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2022 lúc 8:18

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của CA
Do đó: EFlà đường trung bình

=>EF//AB và EF=AB/2(1)

Xét ΔABD có

H là trung điểm của DB

G la trung điểm của AD

Do đó: HG là đường trung bình

=>HG//AB và HG=AB/2(2)

Từ (1) và (2) suy ra HG//FE và HG=FE

b: HE=DC/2

EF=AB/2

mà AB=DC

nên HE=FE

Xét tứ giác EFGH có 

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

mà EH=EF

nên EFGH là hình thoi

Ngô Song Linh
Xem chi tiết
Oo Bản tình ca ác quỷ oO
24 tháng 9 2016 lúc 21:39

a) ta có: ABCD là hình bình hành => AB // CD và AB = CD

mà E là trung điểm của AB ; F là trung điểm của CD

AE = EB = CF = DF (1)

vì AB // CD => EB // DF (2)

từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)

b) hình bình hành ABCD có:

AC cắt BD tại trung điểm của mỗi đường (1)

xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy

c) gọi O là giao điểm của AC ; BD ; EF

xét \(\Delta EOM\) và \(\Delta NOF\) có:

góc EOM = góc NOF (đối đỉnh)

OE = OF 

góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF

ta có: ME // NF

=> tứ giác EMFN là hbh (đccm)

chúc bạn học tốt!! ^^

564576767568768769535737476575678567856856876876697634524545346456457645765756567563

nguyen hao thao
1 tháng 10 2017 lúc 8:56

tu giac emfn

nguyen hao thao
1 tháng 10 2017 lúc 8:57

nhung ban phai ket ban voi minh nhe