Bài 9: Ứng dụng thực tế của tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Manhh Manhh

Cho hình vuông ABCD. Trên cạnh BC lấy điểm E bất kỳ, trên tia đối của tia CD lấy điểm F sao cho CF=CE a. CM: DE=BF b. BD cắt EF tại K, DE cắt BF tại H. CM: FK, DH là các đường cao của tam giác DBF c. Gọi M là trung điểm của EF, O là giao điểm của AC và BD. CM: OM//AK

Thu Thao
17 tháng 12 2020 lúc 22:11

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK


Các câu hỏi tương tự
Bích Phượng My
Xem chi tiết
Huy Vũ
Xem chi tiết
Lam Trần Hà Trang
Xem chi tiết
Mai
Xem chi tiết
Offical NguyenTuanAnh
Xem chi tiết
no no
Xem chi tiết
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Trần Bảo Phương
Xem chi tiết
Đặng Thùy Dương
Xem chi tiết