cos2x - 2sinxcox- 3sin2x=0
Sin2xcos2x + 4sinxcos^2x - 3sin2x - cos2x - 2cosx + 3=0
Tìm góc α ∈ π 6 ; π 4 ; π 3 ; π 2 để phương trình cos 2 x + 3 sin 2 x − 2 cos x = 0 tương đương với phương trình cos 2 x − α = cos x
A. α = π 3
B. α = π 4
C. α = π 6
D. α = π 2
Đáp án A
Ta có
cos 2 x + 3 sin 2 x − 2 cos x = 0 ⇔ sin 2 x + π 6 = cos x ⇔ cos 2 x − π 3 = cos x
Suy ra cos 2 x − π 3 = cos x ⇔ cos 2 x − α = cos x ⇔ α = π 3
Tổng các nghiệm của phương trình cos 2 x - 3 sin 2 x = 1 trong khoảng (0;π) là:
A. 0
B. π
C. 2π
D. 2π/3
Chọn D
ta có cos2x - √3sin2x= 1
⇔ 1 2 cos 2x - 3 2 . sin 2 x = 1 2 ⇔ sin π 6 . c os2x - cos π 6 . sin2x = 1 2 ⇔ sin π 6 − 2 x = sin π 6 ⇔ π 6 − 2 x = π 6 + k 2 π π 6 − 2 x = π − π 6 + k 2 π ⇔ x = − k π x = − π 3 − k π ⇔ x = l π x = − π 3 + l π ( l = − k ∈ Z )
Suy ra phương trình chỉ có một nghiệm thuộc(0;π) là x = 2 π 3
Gọi x 0 là nghiệm dương nhỏ nhất của phương trình 3 sin 2 x + 2 sin x . cos x - cos 2 x = 0 . Chọn khẳng định đúng?
Có bao nhiêu giá trị nguyên của tham số m để phương trình cos 2 x - 3 sin 2 x - 2 3 sin x + cos x + m = 0 có nghiệm x ∈ - π 3 ; 2 π 3
A. 4
B. 3
C. 9
D. 10
Chọn đáp án C
Bảng biến thiên:
Từ bảng biến thiên ta có phương trình (1) đã cho có nghiệm
Vậy có 9 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Giải phương trình:
3sin2x + 2cos2x = 3
a) cos2x - sinx + cosx = 0
b) 2cos³x + sinx + cos2 = 0
a: \(\sqrt{3^2+2^2}=\sqrt{13}\)
Chia hai vế cho căn 13, ta được:
\(\dfrac{3}{\sqrt{13}}\cdot\sin2x+\dfrac{2}{\sqrt{13}}\cdot\cos2x=\dfrac{3}{\sqrt{13}}\)
Đặt \(\cos a=\dfrac{3}{\sqrt{13}}\)
Ta được phương trình: \(\sin\left(2x+a\right)=\cos a=\sin\left(\dfrac{\Pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+a=\dfrac{\Pi}{2}-a+k2\Pi\\2x+a=\dfrac{\Pi}{2}+a+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(\dfrac{\Pi}{2}-2a+k2\Pi\right)\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow cos^2x-sin^2x+cosx-sinx=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos x=\cos\left(\dfrac{\Pi}{2}-x\right)\\\sin\left(x-\dfrac{\Pi}{4}\right)=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}-x+k2\Pi\\x=-\dfrac{\Pi}{2}+x+k2\Pi\\x-\dfrac{\Pi}{4}=-\dfrac{\Pi}{2}+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{4}+k\Pi\\x=-\dfrac{\Pi}{4}+k2\Pi\end{matrix}\right.\)
Giải các phương trình sau cos 2 x = 3 sin 2 x + 3
cos 2 x = 3 sin 2 x + 3
Ta thấy cosx = 0 không thỏa mãn phương trình. Với cosx ≠ 0, chia hai vế của phương trình cho cos2x ta được:
Phương trình 3 sin 2 x - cos 2 x = 2 có tập nghiệm
9sinx +6cosx - 3sin2x + cos2x = 8
Thấy : \(cos\) \(2x=1-2sin^2\left(x\right)\)
\(sin2x=2sinx.cosx\)
Thay vào ta được :
9 sinx + 6cosx - 6. sinx.cosx +1 -2.sin^2(x) -8 =0
9. (sinx-1) + 6.cosx. (1-sinx) +2 -2.sin^2(x) =0
9.(sinx-1) + 6cosx.(1-sinx) +2. (1-sinx) (1+sinx) =0
* TH1 : sinx=1 -> x =.....
* TH2 : sinx khác 1
Chia cả 2 vế cho sinx-1 ta được :
9 - 6.cosx -2 (1+sinx) =0
<--> 7 -6cosx - 2.sinx = 0
<--> 7- 4.cosx -2. (sinx+cosx)= 0
<-->7 - 4.cosx -2.căn2. sin(x+45) = 0 (1)
ta thấy Vế trái luôn > 0 với mọi x nên (1) vô nghiệm
Kết luận : sinx=1
Nghiệm của phương trình cos 2 x − 3 sin 2 x = 1 + sin 2 x là:
A. k π , k ∈ ℤ hoặc - π 3 + k 2 π , k ∈ ℤ
B. k π , k ∈ ℤ hoặc π 3 + kπ , k ∈ ℤ
C. k π , k ∈ ℤ hoặc - π 3 + k 2 π , k ∈ ℤ
D. k π , k ∈ ℤ hoặc - π 3 + kπ , k ∈ ℤ