\(tg\alpha\)+cotg\(\alpha\) =2
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(cotg\alpha=1+tg\alpha\) (B) \(cotg\alpha=1-tg\alpha\)
(C) \(cotg\alpha=1.tg\alpha\) (D) \(cotg\alpha=\dfrac{1}{tg\alpha}\)
Bài 1: Tìm Sin \(\alpha\), Cos \(\alpha\) , biết Tg \(\alpha\) = \(\dfrac{3}{4};cotg\alpha=\dfrac{5}{12}\)
Bài 2 : Cho Sin \(\alpha\) = \(\dfrac{7}{25}\) . Tìm Cos \(\alpha\) , Tg \(\alpha\) và Cotg \(\alpha\)
Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
tính
\(sin\alpha\times cos\alpha\) .Biết \(tg\alpha+cotg\alpha=3\)
ta có : \(tan\alpha+cot\alpha=3\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}=3\)
\(\Leftrightarrow\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}=3\Leftrightarrow\dfrac{1}{sin\alpha.cos\alpha}=3\)
\(\Leftrightarrow sin\alpha.cos\alpha=\dfrac{1}{3}\) vậy \(sin\alpha.cos\alpha=\dfrac{1}{3}\)
sin\(\alpha\)=3cos\(\alpha\). tinh A=sin\(\alpha\).cos\(\alpha\)+\(\dfrac{tg^2\alpha}{9}\)+9 cotg2\(\alpha\)
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Dựng góc nhọn α,biết a) sin α = \(\frac{2}{3}\) b) cos α = 0,6 c) tg α =\(\frac{3}{4}\) d) cotg =\(\frac{3}{2}\)
giúp mình với.Mai phải nộp rồi
Dựng góc nhọn alpha biết
A)sin alpha=0.5
B)cos alpha=0.8
C)tg alpha=3
D)cotg a;ph=2
CM \(1+tg^2\alpha=\frac{1}{cos^2\alpha}\)
\(1+cotg^2\alpha=\frac{1}{sin^2\alpha}\)
\(1+\tan^2a=1+\frac{\sin^2a}{\cos^2a}=\frac{\sin^2a+\cos^2a}{\cos^2a}=\frac{1}{\cos^2a}\)
\(1+\cot^2a=1+\frac{\cos^2a}{\sin^2a}=\frac{\sin^2a+\cos^2a}{\sin^2a}=\frac{1}{\sin^2a}\)