Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Hãy tìm \(\sin\alpha,\cos\alpha\) (làm tròn đến chữ số thập phân thứ tư) nếu biết :
a) \(tg\alpha=\dfrac{1}{3}\)
b) \(cotg\alpha=\dfrac{3}{4}\)
Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :
a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(tg\alpha.cotg\alpha=1\)
b) \(\sin^2\alpha+\cos^2\alpha=1\)
Gợi ý : Sử dụng định lí Pytago
Dựng góc nhọn \(\alpha\), biết :
a) \(\sin\alpha=\dfrac{2}{3}\)
b) \(\cos\alpha=0,6\)
c) \(tg\alpha=\dfrac{3}{4}\)
d) \(cotg\alpha=\dfrac{3}{2}\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
Cho góc nhọn \(\alpha\) :
a) Chứng minh rằng :
\(\dfrac{1-tg\alpha}{1+tg\alpha}=\dfrac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\)
b) Cho \(tg\alpha=\dfrac{1}{3}\). Tính :
\(\dfrac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\)
1. Cho △ABC có góc B=60, c=4cm, a=8cm.
Giải ΔABC. Tính SABC
2. Cho Cosα=\(\dfrac{2}{3}\)
Tìm α
Tính sinα, tgα, cotgα
a) Biết Sin α.cos α=\(\dfrac{12}{25}\). Tính tỉ số lượng giác của góc α
b) Biết Sin α=\(\dfrac{3}{5}\). Tính A=5.Sin2α + 6cos2α
c) Biết cot α=\(\dfrac{4}{3}\). Tính D=\(\dfrac{Sin\alpha+cos\alpha}{Sin\alpha-cos\alpha}\)