so sánh (2022 + 2021)2020 và (1998 + 1997)1996
so sánh P=2019/2020+2020/2021+2021/2022 và Q=2019+2020+2021/2020+2021+2022
So sánh bt A=1996/1997+1997/1998 với B=1996+1997/1997+1998
so sánh
\(\sqrt{2021}-\sqrt{2020}\) và \(\sqrt{2022}-\sqrt{2021}\)
\(\sqrt{2022}-\sqrt{2020}\) và \(\sqrt{2020}-\sqrt{2018}\)
so sánh hai phân số : 1997/1996 và 1998/1997
$1997/1996$ $>$ $1998/1997$
$=>$ Phân số nào có mẫu số bé hơn thì phân số đó lớn hơn.
So sánh hai phân số 2021/2022 và 2020/2021
\(\dfrac{2021}{2022}\) và \(\dfrac{2020}{2021}\)
\(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)
\(\dfrac{2020}{2021}=1-\dfrac{1}{2021}\)
\(\text{Vì }\)\(\dfrac{1}{2022}>\dfrac{1}{2021}=>1-\dfrac{1}{2022}>1-\dfrac{1}{2021}=>\dfrac{2021}{2022}>\dfrac{2020}{2021}\)
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
A=2021*2021*2021 B=2020*2021*2022 không tính kết quả A và B hãy so sánh
Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)
so sánh bằng cách nhanh nhất
1996 x 1999 và 1997 x 1998
-1996x1999=1996x(1998+1)=1996x1998+1996
-1997x1998=(1996+1)x1998=1996x1998+1998
Vì vậy 1996x1999<1997x1998
so sánh bằng cách nhanh nhất: 2019/2021 và 2020/2022
Có: \(\dfrac{2019}{2021}=1-\dfrac{2}{2021}\)
\(\dfrac{2020}{2022}=1-\dfrac{2}{2022}\)
Mà \(\dfrac{2}{2021}>\dfrac{2}{2022}\Rightarrow1-\dfrac{2}{2021}< 1-\dfrac{2}{2022}\Rightarrow\dfrac{2019}{2021}< \dfrac{2020}{2022}\)