H là trực tâm của tam giác ABC, AH' là đường cao kẻ từ A. Cho AH/AH'=k. Chứng minh:tanB.tanC=1+k
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), đường cao AD và trực tâm H. Gọi I là trung điểm của BC, AO cắt BC tại R. Qua R kẻ đường thẳng song song với IH cắt AH tại K. Gọi J là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác JBC
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC
Cho tam giác ABC các đường cao AD,BE,CF đồng quy tại H. Gọi K là giao điểm của EF và AH, M là trung điểm của AH chứng minh rằng K là trực tâm của tam giác BMC
Hình hơi rối, bạn tự vẽ hình nhé!
Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.
Vì \(ME=MA=MH\)( tính chất trung tuyến )
Kết hợp tính đối xứng của điểm S ta có:
\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)
=> Tứ giác MESB nội tiếp
\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)
Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)
Nên tứ giác KSCE cũng nội tiếp
=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)
Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\)
Nên tứ giác RBCE nội tiếp
=> \(\widehat{BRC}=\widehat{BEC}=90^o\)
Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)
Nên K là trực tâm của \(\Delta BMC\)
a: Xét ΔDAB có
DK,AH là đường cao
DK cắt AH tại K
=>K là trực tâm
=>BK vuông góc AD
b: ΔABC
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL Giúp mình càng nhanh càng tốt ạ mình cần trong 10 p nữa ạ
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Từ H kẻ DH vuông góc AB ; HE vuông góc AC
a) Chứng minh DE = AH
b) Gọi giao điểm của DE và AH là K. Chứng minh K là trung điểm của DE và AH
c) Chứng minh góc ADE = góc ACB
d) Lấy I và K' sao cho AB là đường trung trực của HI, AC là đường trung trực của HK'. Chứng minh BI song song CK'
Cho tam giác ABC vuông tại A , kẻ đường cao AH . trên cạnh AC lấy điểm K sao cho AK = AH . kẻ KD vuông góc với AC tại K ( D thuộc BC ) > chứng minh
a, tam giác AHD = tam giác AKD
b, AD là đường trung trực của đoạn thẳng AK
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AH=AK
AD chung
=>ΔAHD=ΔAKD
b: AK=AH
DH=DK
=>AD là trung trực của HK
Cho tam giác ABC, đường cao AA', trực tâm H. Cho biết AH/AA'=k. Chứng minh: tanB.tanC = 1+k.
Cho tam giác ABC, đường cao AA', trực tâm H. Cho biết AH/AA'=k. Chứng minh: tanB.tanC = 1+k.