cho hai đường thẳng d: y = -3x + 1 và d' : y = -x - 2.Tìm tọa độ giao điểm d và d'
Cho hai đường thẳng (d) và (d’) có phương trình lần lượt là d: y=\(-x+1\) , \(d'\):y=3x-7
a) Tìm tọa độ điểm A là giao điểm của d và d’.
b) Viết phương trình đường thẳng OA trong đó O là gốc tọa độ.
c) Viết phương trình đường thẳng qua A và vuông góc với đường thẳng d.
a) Vẽ (d) và (d') trên cùng một mặt phẳng tọa độ
b) Gọi N là giao điểm của (d) và (d'). Tìm tọa độ điểm N
c) Tính số đo góc \(\alpha\) tạo bởi đường thẳng (d') với trục Ox
a:
b: Phương trình hoành độ giao điểm là:
4-2x=3x+1
=>-2x-3x=1-4
=>-5x=-3
=>\(x=\dfrac{3}{5}\)
Thay x=3/5 vào y=3x+1, ta được:
\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)
Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)
c: (d'): y=3x+1
=>a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq71^034'\)
Cho (d₁): y = 3x - 2 và (d₂): y = \(-\dfrac{2}{3}x\)
a) Tìm tọa độ giao điểm A của (d₁) và (d₂).
b) Viết pt đường thẳng (d) đi qua A và song song với (d₃): y = x-1
a: Phương trình hoành độ giao điểm là:
\(3x-2=-\dfrac{2}{3}x\)
=>\(3x+\dfrac{2}{3}x=2\)
=>\(\dfrac{11}{3}x=2\)
=>\(x=2:\dfrac{11}{3}=\dfrac{6}{11}\)
Khi x=6/11 thì \(y=-\dfrac{2}{3}\cdot\dfrac{6}{11}=-\dfrac{4}{11}\)
Vậy: \(A\left(\dfrac{6}{11};-\dfrac{4}{11}\right)\)
b: Đặt (d): y=ax+b
Vì (d)//(d3) nên a=1 và b<>-1
=>(d): y=x+b
Thay x=6/11 và y=-4/11 vào (d), ta được:
\(b+\dfrac{6}{11}=-\dfrac{4}{11}\)
=>\(b=-\dfrac{4}{11}-\dfrac{6}{11}=-\dfrac{10}{11}\)
Vậy: (d): \(y=x-\dfrac{10}{11}\)
Cho hai đường thẳng (D): y = - x - 4 và (D1) : y = 3x + 2
a) Vẽ đồ thị (D) và (D1) trên cùng 1 mặt phẳng tọa độ Oxy
b) Xác định tọa độ giao điểm A của hai đường thẳng (D) và (D1) bằng phép toán
c) Viết phương trình đường thẳng (D2): y = ax + b (a ≠ 0) song song với đường thẳng (D) và đi qua điểm B(-2;5)
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
Bài 5: Cho hai hàm số (D): y = 3x - 1 và (d): y = -x +2
a) Vẽ (D) và (d) trên cùng mặt phẳng tọa độ Oxy
b) Tìm tọa độ giao điểm của (D) và (d) bằng phép toán
c) Viết phương trình đường thẳng m song song với (D) và đi qua điểm (1;5)
d) Viết phương trình đường thẳng song song với trục hoành và đi qua giao điểm của (d) và (D)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=2-\dfrac{3}{4}=\dfrac{5}{4}\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2x-1
1) Vẽ đồ thị đường thẳng (d)
2) Viết phương trình đường thẳng (d1) đi qua A(2;1) và song song với đường thẳng (d'): y = -3x+4.
3) Tìm tọa độ giao điểm của hai đường thẳng (d) và (d')
Tọa độ giao điểm của hai đường thẳng (d): y = –3x – 2 và (d’): y = –x + 4 là:
Xét phương trình hoành độ giao điểm của 2 đường thẳng (d) và )d'):
- 3x - 2 = - x + 4.
<=> - 3x - 2 + x - 4 = 0.
<=> - 2x - 6 = 0.
<=> x = - 3.
=> y = 7.
Vậy tọa độ giao điểm của hai đường thẳng (d) và (d’) là (-3; 7).
Cho (d₁): y = \(3x-2\)
(d₂): y = \(-\dfrac{2}{3}x\)
a) Tìm tọa độ giao điểm A của (d₁) và (d₂).
b) Viết phương trình đường thẳng (d) đi qua A song song với (d₃): y = x - 1
a) Phương trình hoành độ giao điểm của (d₁) và (d₂):
3x - 2 = -2/3 x
⇔ 3x + 2/3 x = 2
⇔ 11/3 x = 2
⇔ x = 2 : 11/3
⇔ x = 6/11
Thay x = 6/11 vào (d₂) ta được:
y = -2/3 . 6/11 = -4/11
Vậy tọa độ giao điểm của (d₁) và (d₂) là A(6/11; -4/11)
b) Gọi (d): y = ax + b
Do (d) // (d₃) nên a = 1
⇒ (d): y = x + b
Do (d) đi qua A(6/11; -4/11) nên thay tọa độ điểm A vào (d) ta có:
6/11 + b = -4/11
⇔ b = -4/11 - 6/11
⇔ b = -10/11
Vậy (d): y = x - 10/11
cho hàm só y=ax-2 (a≠0), có đồ thị đường thẳng (d)
a) xác định a, biết (d) song song với đường thẳng y=1-3x. vẽ đường thẳng (d)
b) tìm tọa độ giao điểm của đường thẳng (d) và đường thẳng (d'): y=x+6
a.
- Đường thẳng (d) song song với y = 1 - 3x nên ta có:
\(a=-3\)
\(\rightarrow\) Hàm số có dạng \(y=-3x-2\)
- Vẽ đường thẳng \(\left(d\right):y=-3x-2\)
+ Giao với trục Oy: \(x=0\rightarrow y=-2\Rightarrow A\left(0;-2\right)\)
+ Giao với trục Ox: \(y=0\rightarrow x=-\dfrac{2}{3}\Rightarrow B\left(-\dfrac{2}{3};0\right)\)
Nối 2 điểm A và B ta được đường thẳng (d)
b.
- Gọi tọa độ giao điểm của đường thẳng \(\left(d\right)\) và \(\left(d'\right):y=x+6\) là: \(\left(x_0;y_0\right)\)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d\right)\) nên ta có:
\(y_0=-3x_0-2\) (1)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d'\right):y=x+6\) nên ta có:
\(y_0=x_0+6\) (2)
- Từ (1) và (2), ta có:
\(-3x_0-2=x_0+6\)
\(\Leftrightarrow-3x_0-x_0=6+2\)
\(\Leftrightarrow-4x_0=8\)
\(\Leftrightarrow x_0=-2\)
\(\rightarrow y_0=-2+6=4\)
Vậy tọa độ giao điểm 2 đường thẳng đó là: \(\left(-2;4\right)\)
ch 2 đường thẳng (d):y=4-2x và (d'):y=3x+1
a, ve (d) và (d') trên cùng 1 mặt phẳng tọa độ
b,gọi n là giao điểm của hai đường thẳng (d) và (d'). tìm tọa độ của điểm n
c.tính số đo góc ampha tạo bởi đường thẳng (d') vs trục ox
a,tự vẽ
b) Xét phương trình hoành độ giao điểm của d và d':
4 - 2x = 3x + 1
<=> -2x - 3x = 1 - 4
<=> 5x = 3
<=> x = 3/5
=> y = 14/5