Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Diệp Anh
Xem chi tiết
Phạm huy hoàng
Xem chi tiết
Nguyễn Trần Thành Đạt
29 tháng 8 2021 lúc 19:44

Em gửi bài qua môn hóa nha em

Phạm huy hoàng
Xem chi tiết
võ thị lan anh
Xem chi tiết
Anh Pha
21 tháng 10 2018 lúc 20:41

\(\sqrt{81.16.169}=\sqrt{81}.\sqrt{16}.\sqrt{169}=9.4.13=468\)

\(\sqrt{10}.\sqrt{810}=\sqrt{10.10}.\sqrt{81}=10.9=90\)

\(\sqrt{64}.\sqrt{81.100}-\sqrt{64}.\sqrt{196.16}=\sqrt{64}\left(\sqrt{81}.\sqrt{100}-\sqrt{196}.\sqrt{16}\right)=8.\left(9.10-14.4\right)=8.34=272\)

Synx Minh
Xem chi tiết
Đỗ Duy Hào
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 19:33

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

Minh Long Tô
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Phạm Ngân Hà
23 tháng 8 2017 lúc 15:15

Kiểm tra lại đề xem thừa số cuối có đúng quy luật của dãy không.

Emily Nain
Xem chi tiết
Lê Tài Bảo Châu
25 tháng 4 2019 lúc 18:17

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}\)

\(A=\left(\frac{2.3....99}{1.2....98}\right).\left(\frac{2.3....99}{3.4....100}\right)\)

\(A=\frac{99}{1}.\frac{2}{100}\)

\(A=\frac{198}{100}\)