Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Vân
Xem chi tiết
Nguyễn Đức Tú
8 tháng 5 2022 lúc 16:25

mình hong biết, khó lắm

Sửu Phạm
Xem chi tiết
Đỗ Tuệ Lâm
23 tháng 2 2022 lúc 21:15

áp dụng đl ta-lét vào tam giác có:

\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)

X = BC + CA = 1,875 + 5 = 6,875

Nguyễn Phạm Linh Chi
Xem chi tiết
nameless
21 tháng 8 2020 lúc 22:12

Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)

Khách vãng lai đã xóa
Phùng Gia Linh
Xem chi tiết
Nguyễn Ngọc Phương Anh
Xem chi tiết
Tran Le Khanh Linh
15 tháng 4 2020 lúc 9:49

Áp dụng tính chất dãy ti số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

=> đpcm

Khách vãng lai đã xóa
Lương Thùy Linh
Xem chi tiết
Lương Thùy Linh
7 tháng 5 2017 lúc 20:51

Có ai giúp mik ko vậy nè!Hu Hu!!!!

ngohoangtram
Xem chi tiết
nguyễn thị ngọc trâm
Xem chi tiết
Trần Chí Phèo 123
17 tháng 8 2016 lúc 20:33

ko biet lam

nguyễn thị ngọc trâm
17 tháng 8 2016 lúc 20:36

bạn khá thông minh 

nhưg sorry mình k thể k cho bb đc nha

Lê Khánh Linh
Xem chi tiết
lê đức anh
5 tháng 11 2021 lúc 7:35

Ta có:

\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)

\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

Khách vãng lai đã xóa