Rút gọn
a) x(x+y)+y(x-y)
b) x(x^2-y)+x(y^2-y)-x(x^2+y^2)
Giúp mk với
GIÚP MK BÀI NÀY
Vết đa thức sau dưới dạng tổng các đơn thức rồi rút gọn tính giá trị:
a) A= 4x (x + y) -5y (x-y) -4x^2 với x= -5 ; y= 2
b) B= -3x (x^2+ y^2 ) + 2y ( x^2 -y ) với x=1 ;y=2
a) \(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2=4x^2+4xy-5xy+5y^2-4x^2=5y^2-xy\)
Với x = -5; y = 2 thì: \(A=5\cdot2^2-\left(-5\right)\cdot2=20+10=30\)
b) \(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)=-3x^3-3xy^2+2yx^2-2y^2=-3x^3+2x^2y-3xy^2-2y^2\)
Với x = 1; y = 2 thì: \(B=-3\cdot1^3+2\cdot1^2\cdot2-3\cdot1\cdot2^2-2\cdot2^2=-3+4-12-8=-19\)
Viết các đơn thức sau dưới dạng thu gọn
a)3x.5y2.x2
GIÚP MK BÀI NÀY
Vết đa thức sau dưới dạng tổng các đơn thức rồi rút gọn tính giá trị:
a) A= 4x (x + y) -5y (x-y) -4x^2 với x= -5 ; y= 2
b) B= -3x (x^2+ y^2 ) + 2y ( x^2 -y ) với x=1 ;y=2
\(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2\)
\(=4x^2+4xy-5y^2-5xy-4x^2\)
= \(\left(4x^2-4x^2\right)+\left(4xy-5xy\right)-5y^2\)
\(=5y^2-xy\)
Thay x=-5 và y=2 vào đa thức \(5y^2-xy\) ta được:
\(5.2^2-\left(-5\right).2=20+10=30\)
Vậy 30 là giá trị của đa thức trên tại x=-5 và y=2
\(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)\)
\(=-3x^3-3xy^2+2yx^2-2y^2\)
\(=-3x^3-3xy^2+2yx^2-2y^2\)
Thay x=1 và y=2 vào đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\)
\(\left(-3\right).1^3-2.1.2^2+2.2.1^2-2.2^2=-3-8+4-8=-15\)
Vậy -15 là giá trị của đa thức \(=-3x^3-3xy^2+2yx^2-2y^2\) tại x=1 và y=2
^...^ ^_^ hihihi
GIÚP MK BÀI NÀY
Vết đa thức sau dưới dạng tổng các đơn thức rồi rút gọn tính giá trị:
a) A= 4x (x + y) -5y (x-y) -4x^2 với x= -5 ; y= 2
b) B= -3x (x^2+ y^2 ) + 2y ( x^2 -y ) với x=1 ;y=2
Rút gọn:
a,(x+2)^2-(x-2)^2-2(x-2)(x+2)
b,(x+y)^2+(x+y)^2+2(x-y)(x+y)
c,(x-y+z)^2-2(x+y)-2(x+y)(x-y)-z^2
Nhanh giúp mk nha ,mơn
\(a,\left(x+2\right)^2-\left(x-2\right)^2-2\left(x-2\right)\left(x+2\right).\)
\(=\left(x+2-x+2\right)^2=4^2=16\)
\(b,\left(x-y\right)^2+\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y+x+y\right)^2=x^2\)
\(c,\left(x-y+z\right)^2-2\left(x+y\right)-2\left(x+y\right)\left(x-y\right)-z^2\)
giúp với ạ
Rút gọn
a, ( x + y ) . ( x + y ) mũ 2– 3xy . ( x + y )
b, ( x – y ) . ( x – y ) mũ 2 – 3xy . ( x – y)
c, ( x – 2y) mũ 2 + 4y mũ 2
d, ( 3x – 2y ) mũ 2 + 12xy
e, ( x – 3y ) . ( x + 3y ) – ( x – 2y ) mũ 2
a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y)
= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)
= \(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y - 3\(xy^2\)
= \(x^3\) + y3
b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\))
= (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)
= \(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)
= \(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3
c, (\(x\) - 2y)2 + 4y2
= \(x^2\) - 4\(xy\) + 4y2 + 4y2
= \(x^2\) - 4\(xy\) + 8y2
Rút gọn: A=x^2/(x+y)(1-y)-y^2/(x+y)(1+x)-x^2y^2/(1+x)(1-y)
Giúp t với :')
A=\(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}\)\(-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
A=\(\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)
A=\(\frac{x^2+x^3-y^2+y^3-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)
A=\(\frac{\left(x+y\right)\left(x-y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1+y\right)\left(x+y\right)}\)
A=\(\frac{\left(x+y\right)\left(x-y+x^2-xy+y^2-x^2y^2\right)}{\left(x+y\right)\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{x\left(x+1\right)-y\left(x+1\right)+y^2\left(1-x\right)\left(1+x\right)}{\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{\left(x+1\right)\left(x-y+y^2-y^2x\right)}{\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{-y\left(1-y\right)+x\left(1-y\right)\left(1+y\right)}{\left(1-y\right)}\)
A=\(\frac{\left(1-y\right)\left(-y+x+xy\right)}{1-y}\)=\(x-y+xy\)
giúp với ạ
Bài 1:Rút gọn biểu thức
a)A=(x+y)2 - (x-y)2
b)B=(x+y)2 - 2(x+y)(x-y)+(x-y)2
c)(x2 + x +1)(x2 -x+1)(x2 -1)
d)(a+b-c)2 + (a-b+c)2 - 2(b-c)2
Bài 2: Cho các số thực x,y thỏa mãn điều kiện x+y=3; x2 +y2 =17. Tính giá trị biểu thức x3 +y3
B1
a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)
b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)
c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)
\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)
d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)
\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)
\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)
\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)
\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)
B2:
\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)
\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)
\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)
Bài 1:
a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=x^2+2xy+y^2-x^2+2xy+y^2\)
=4xy
b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)^2\)
\(=\left(2y\right)^2=4y^2\)
c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^6-1\)
d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)
\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)
\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)
\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)
\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)
\(=2a^2-4bc\)
Bài 2:
Ta có: x+y=3
nên \(\left(x+y\right)^2=9\)
\(\Leftrightarrow2xy+17=9\)
\(\Leftrightarrow2xy=-8\)
hay xy=-4
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=3^3-3\cdot\left(-4\right)\cdot3\)
\(=27+36=63\)
Rút gọn biểu thức:
A= (x-y)²-2×(x²-xy-y²) giúp mk với ạ
\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)
Rút gọn biểu thức
a,(x+y)2-(x-y)2
b,(x-y-z)2+(x+y+z)2
c,(x+y)2-2(x+y)(x-y)+(x-y)2
\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)
\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)
\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)
Rút gọn biểu thức:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)
b) (2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
c) (x+y+z)^2-2(x+y+z)(x+y)+(x+y)
giúp mình vs!!!!
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt