1)Cho tứ giác ABCD, AB=10cm, BD=12cm, góc xen giữa AC và BD =300. Tính SABCD
Cho tứ giác ABCD, AB=10cm, BD=12cm,góc xen giữa AC và BD bằng 300. Tính SABCD
Cho tứ giác ABCD ,AB=10cm,BD=12cm, góc xen giữa AC và BD bằng 30 độ .Tính SABCD
Cho tứ giác ABCD có AC = 10cm, BD = 12cm, hai đường chéo AC và BD cắt nhau tại O. Biết góc AOB = 30°. Tính diện tích ABCD.
Cho tứ giác ABCD có AC vuông góc và cắt BD tại O. AB=1/2 CD. OA =1/3 AC. SOAB =4,3 cm^2. Tính SABCD.
Cho tứ giác ABCD có AC = 10cm , BD = 12cm , hai đường chéo AC và BD cắt nhau tại O . Biết AOB = 30độ. Tính diện tích ABCD
Cho tứ giác ABCD có 2 đg chéo BD và AC vuông góc vs nhau tại O.Biết AB=1/2CD và OA=1/3AC;SOAB=4,3 cm^2.Tính SABCD?
Cho tứ giác ABCDcos AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm và đường chéo BD = 6cm.
a) Chứng minh tam giác ABD đồng dạng với tam giác BDC
b) Chứng minh tứ giác ABCD là hình thang
c) Hai đường chéo AC và BD cắt nhau tại O. Tính DO
Cho tứ giác ABCD có AC cắt BD tại O. Biết AC=4. BD=5, góc AOB=60 độ. Tính SABCD
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot OA\cdot OB\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OA\cdot OB\)
\(S_{OBC}=\dfrac{1}{2}\cdot OB\cdot OC\cdot sinBOC\)
\(=\dfrac{1}{2}\cdot OB\cdot OC\cdot sin120=\dfrac{\sqrt{3}}{4}\cdot OB\cdot OC\)
\(S_{ODC}=\dfrac{1}{2}\cdot OD\cdot OC\cdot sinDOC\)
\(=\dfrac{1}{2}\cdot OD\cdot OC\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OD\cdot OC\)
\(S_{AOD}=\dfrac{1}{2}\cdot OA\cdot OD\cdot sinAOD\)
\(=\dfrac{1}{2}\cdot OA\cdot OD\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OA\cdot OD\)
\(S_{ABCD}=S_{AOB}+S_{AOD}+S_{COD}+S_{COB}\)
\(=\dfrac{\sqrt{3}}{4}\left(OA\cdot OB+OB\cdot OC+OD\cdot OC+OD\cdot OA\right)\)
\(=\dfrac{\sqrt{3}}{4}\cdot\left(OB\cdot AC+OD\cdot AC\right)\)
\(=\dfrac{\sqrt{3}}{4}\left(AC\cdot BD\right)=\dfrac{\sqrt{3}}{4}\cdot4\cdot5=5\sqrt{3}\)
cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Biết AC = 12cm, BD = 16cm. E,F lần lượt là trung điểm của AB và CD. tính EF