Cho số A = (n + 4) x (n + 7), với n là số tự nhiên. Chứng tỏ rằng A chia hết cho 2.
Bài 1: Khi chia số tự nhiên a cho 148 ta được số dư là 111. Hỏi a có chia hết cho 37 không ? Vì sao?
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 12) là số chia hết cho 2
Bài 3: Chứng minh rằng: ab ba + chia hết cho 11 Bài 7: Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
Bài 4: Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
Bài 5: Tìm số tự nhiên n để (3n + 4) chia hết cho n – 1.
giúp mình nha!!!=333
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Cho A = ( n + 4 ) x ( n + 7 ) với n là số tự nhiên
Chứng tỏ A chia hết cho 2
*Nếu n lẻ
=> n + 7 chẵn
=> A=(n + 4)(n + 7) chẵn
=> A chia hết cho 2
*Nếu n chẵn
=> n + 4 chẵn
=> A= ( n + 4)(n+ 7) chẵn
=> A chia hết cho 2
Vậy ...............
Easy mà!
\(A=\left(n+4\right)\left(n+7\right)=n^2+11n+28\)
Do số chia hết cho 2 là số chẵn nên \(n^2+11n+28\) là số chẵn
Mà 28 là số chẵn nên \(n^2+11n\) phải là số chẵn. (lưu ý rằng n là số tự nhiên)
Ta sẽ c/m \(n^2+11n\) là số chẵn. (*)
Thật vậy,ta có: \(n^2+11n=n\left(n+11\right)\)
+Với n lẻ thì n + 11 là số chẵn suy ra n(n + 11) là số chẵn => Mệnh đề (*) đúng với n lẻ (1)
+Với n chẵn thì n + 11 là số lẻ. Mà số chẵn nhân số lẻ bằng số chẵn. Do vậy n(n + 1) chẵn. =>Mệnh đề (*) đúng với n chẵn (2)
Từ (1) và (2) suy ra mệnh đề (*) đúng với mọi số tự nhiên n hay \(n^2+11n\) là số chẵn
Suy ra \(n^2+11n+28\) hay \(n^2+11n+28⋮2\Rightarrow A⋮2^{\left(đpcm\right)}\)
Bạn nên làm theo cách Incursion_03 .Vì nó ngắn gọn hơn cách mình.
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
3.
Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.
$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$
$\Rightarrow b\vdots d$
Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài)
Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.
Chứng tỏ rằng :
a) ( 5n + 7 ) x ( 4n + 6 ) chia hết cho 2 với mọi số tự nhiên n
b) ( 8n + 1 ) x ( 6n + 5 ) không chia hết cho 2 với mọi số tự nhiên n
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4).(n+7) là một số chia hết cho 2