Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khong can biet
Xem chi tiết
cuong nguyen manh
10 tháng 3 2016 lúc 21:09

Đặt a=x^670  b=y^670 tta có a+b=6.912 và a+b2=33.76244

suy ra a3 + b3=x^2013+y^2010suy ra(a+b)2=6.9122

a^2+2ab+b^2=47.775744 suy ra ab=7.006652

a^3+b^3=x^2010+y^2010=(a+b)(a^2-ab+b^2)=6.912*(33.76244+7.006652)=281.7959639

bạn tính lại nhé

Phan Thị Thu
Xem chi tiết
Phan Thị Thu
20 tháng 1 2016 lúc 20:29

Quan trọng cách làm sao

Phan Thị Thu
20 tháng 1 2016 lúc 20:32

mình hỏi cách làm cơ chứ kq mình pt

 

Út
Xem chi tiết
nguyễn văn thái
Xem chi tiết
Nguyễn Hoàng Kỳ_123
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Khách vãng lai đã xóa
Thanh Tùng Nguyễn
Xem chi tiết
IS
17 tháng 3 2020 lúc 20:36

trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)

dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)

\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )

 dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)

* áp dụng bất đẳng thức (##) ta được 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\

* áp dụng bất đẳng thức (#) ta có

vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

   =\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)

Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)

                  \(y\left(y^2-xz+2010\right)>0\)

                  \(z\left(z^2-xy+2010\right)>0\)

Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

                                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)

                                       do dó       \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)        \(\)

                                                     =\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)

                                                     =\(\left(x+y+z\right)^3\left(2\right)\)

Từ (1) zà (2) suy ra

vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

Khách vãng lai đã xóa
chu thi hong van
18 tháng 3 2020 lúc 8:36

thí chủ có link koooooo

Khách vãng lai đã xóa
chu thi hong van
18 tháng 3 2020 lúc 8:37

vcl lớp 9

Khách vãng lai đã xóa
Ngô quang minh
Xem chi tiết
Thắng Nguyễn
21 tháng 11 2016 lúc 22:26

Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath