Cho \(x^{670}+y^{670}=6,912\)
Tính S=\(x^{2010}+y^{2010}\)
x670 +y670 =6,912 va x1340 +y1340 =33,76244 tinh S=x2010 +y2010
Đặt a=x^670 b=y^670 tta có a+b=6.912 và a2 +b2=33.76244
suy ra a3 + b3=x^2013+y^2010suy ra(a+b)2=6.9122
a^2+2ab+b^2=47.775744 suy ra ab=7.006652
a^3+b^3=x^2010+y^2010=(a+b)(a^2-ab+b^2)=6.912*(33.76244+7.006652)=281.7959639
bạn tính lại nhé
Tính x2010 + y2010 biết x670+y670 =6,912 và x1340 +y1340 = 33,76244
Cho x^670+y^670=6,912 và x^1340+y^1340=33,76244. Tính giá trị biểu tức:
M=x^2010+y^2010. trình bày tóm tắt lời giải
helpp
cho x670+y670=6,912 và x1340+y1340=33,76244
tính giá trị của M=x2010+y2010. giai chi tiet nha <3
GIẢI BẰNG MÁY TÍNH CẦM TAY NHÉ
cho x670+y670=6,912 và x1340+y1340=33,76244
tính giá trị của M=x2010+y2010. giai chi tiet nha <3
GIẢI BẰNG MÁY TÍNH CẦM TAY NHÉ
Tìm nghiệm nguyên của phương trình \(y^{2010}=x^{2010}-x^{1340}-x^{670}+2\)
cho các số dương x;y;z thỏa mãn xy+yz+zx=670
CMR: \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)
\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)
\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)
cho x,y,z dương sao cho \(xy+yz+zx=670\)
c/m \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)
dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)
\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )
dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)
* áp dụng bất đẳng thức (##) ta được
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\
* áp dụng bất đẳng thức (#) ta có
vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
=\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)
Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)
\(y\left(y^2-xz+2010\right)>0\)
\(z\left(z^2-xy+2010\right)>0\)
Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)
do dó \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\) \(\)
=\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)
=\(\left(x+y+z\right)^3\left(2\right)\)
Từ (1) zà (2) suy ra
vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)
dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
thí chủ có link koooooo
xy+yz+zx=670 cm:
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath