Cho a,b,c thỏa mãn:a/2014=b/2015=c/2016
CMR:4.(a-b).(b-c)=(c-a)2
cho a,b,c thỏa mãn:a\2013=b\2014=c\2015.Chứng minh rằng 4(a-b)(b-c)=(c-a)^2
Cho a, b, c thỏa mãn:a/2014=b/2015=c/2016
Chứng minh: 4(a-b)(b-c) = (c-a).(c-a)
đặt a/2014=b/2015=c/2016=k
=>a=2014k;b=2015k;c=2016k
=>4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)
=4.k(2014-2015).k92015-2016)=4.k.(-1).k.(-1)=4.k^2(1)
=>(c-a)(c-a)=(c-a)^2=(2016k-2014k)(2016k-2014k)=[k(2016-2014)]^2=[k.2]^2=k^2.4(2)
từ (1)và (2)=>4(a-b)(b-c) = (c-a).(c-a)
Cho a,b,c thỏa mãn a/2014=b/2015=c/2016.CMR 4(a-b)0(b-c)=(c-a)^2
Cho a,b,c thỏa mãn a/2014=b/2015=c/2016
Chứng minh: 4(a-b)(b-c)=(c-a)^2
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\)
=>\(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2016k-2014k\right)^2=\left(2k\right)^2=4k^2\)
=>đpcm
Cho ba số thực a,b và c thỏa mãn a/2014=b/2015=c/2016
Chứng minh rằng : 4(a-b)(b-c) = (c-a)^2
đặt \(\frac{a}{2014}\)=\(\frac{b}{2015}\)=\(\frac{c}{2016}\)= K
---> a = 2014k, b=2015k , c=2016k
về trái : 4. ( 2014k-2015k). (2015k-2016k)=4. (-1k).(-1k)=4k2
Về phai: (2016k-2014k)2=(2k)2=4k2
---> ve trai = ve phai----> dpcm
Cho a,b,c thỏa mãn
a/2014 = b/2015 = c/2016. Chứng minh rằng:
4(a-b)(b-c) = (c-a)2
Đặt : \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
\(\Rightarrow\frac{a}{2014}=k\Rightarrow a=2014k\)
\(\Rightarrow\frac{b}{2015}=k\Rightarrow b=2015k\)
\(\Rightarrow\frac{c}{2016}=k\Rightarrow c=2016k\)
Ta có : \(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)\)
\(=4k\left(2014-2015\right).k\left(2015-2016\right)=4k.\left(-1\right).k.\left(-1\right)=4.k^2\)( 1 )
\(\Rightarrow\left(c-a\right)^2=\left(2016k-2014k\right)\left(2016k-2014k\right)=\left[\left(2016k-2014k\right)^2\right]=\left[k\left(2016-2014\right)\right]=\left(k^2\right)^2=k^{2.4}\)( 2 )
Từ \(\left(1\right)\left(2\right)\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Cho ba số a,b,c thỏa mãn:a+b+c<=2015. Chứng minh:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}< =2015\)
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath làm tương tự chỗ cuối thay a+b+c=2015 là dc
cho a;b;c thỏa mãn a/2014=b/2015=c/2016
CMR:4(a-b)(b-c)
Cho các số nguyên a;b;c thỏa mãn :
\(\frac{2014.a^2+b^2+c^2}{a^2}=\frac{a^2+2014.b^2+c^2}{b^2}=\frac{a^2+b^2+2014.c^2}{c^2}\)
Tính giá trị biểu thức : P=\(\frac{2015.a^2+b^2}{c^2}+\frac{2015.b^2+c^2}{a^2}+\frac{2015.c^2+a^2}{b^2}\)
cho a, b, c thỏa mãn:a^2+b^2+c^2=b^2-c^2/a^2+3+c^2-a^2/b^2+4+a^2-b^2/c^2+5. CMR a=b=c=0
giả sử :c^2>a^2>b^2 khi đó ta có :
\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)
Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c
chuc bn hk tốt!