Tính GTNN B=9x^2-6x+5
C=x^2+x-3
D=2x^2+2xy+y^2-2x+2y+2
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
a)9x^3y^2+3x^2y^2 b)x^3+2x^2+3x c)6x^2y+4xy^2+2xy d)5x^2 (x-2y)-15x (x-2y) Help me zứi
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
Phân tích thành nhân tử :
a)xy+3x-7y-21
b)2xy-15-6x+5y
c)2x^2y+2xy^2-2x-2y
d)x^2-(a+b)x+ab
e)7x^3y-3xyz-21x^2+9z
f)4x+4y-x^2(x+y)
g)y^2+y-x^2+x
h)4x^2-2x-y^2-y
i)9x^2-25y^2-6x+10y
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
a) GTNN: A=x(x-3)(x-4)(x-7)
b) GTNN: B=2x\(^2\)+y\(^2\)-2xy-2x+3
c) GTNN: A=\(\frac{2}{6x-5-9x^2}\)
d) GTNN: B=\(\frac{3x^2+9x+\text{1}7}{3x^2+9x+7}\)
e) GTNN: A=\(\frac{3-4x}{x^2+\text{1}}\)
f) GTLN: A=\(\frac{3-4x}{x^2+\text{1}}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm GTNN của bt
A=2x^2-4x+10
B=2x^2+y^3+2xy+6x+2y+2015
C=(x-1)(x+2)+3x+5
D=4x+3/x^2+1
giúp mk nka 5 tk lun !!^_^
A)\(A=2.x^2-4.x+10\)
\(2A=4.x^2-8x+20\)
\(2A=4.x^2-2.2x.2+2^2+16\)
\(2A=\left(2x-2\right)^2+16\ge16\forall x\)
\(A=8\)
DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)
VẬY GTNN CỦA A LÀ 8 VỚI x=1
C)\(\left(x-1\right)\left(x+2\right)+3x+5\)
\(C=x^2+2x-x-2+3x+5\)
\(C=x^2+4x+3\)
\(4C=4x^2+16x+12\)
\(4C=4x^2+2.2x.4+4^2-4\)
\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)
\(C=-1\)
DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)
VẬY GTNN CỦA C LÀ -1 VỚI X=-2
XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI
1/ phân tích đa thức thành Nhân tử
a. (2x + y) ^3 - 16( 2x-y)
b. 25( x+ 2y) ^2 - 16 (2x- y)
c. 4/9 ( x -3y) ^2 - 0.04 (x+y) ^2
2/ tính giá trị của biểu thức
A= x^3y^2 - x^2y^3 - 2x + 2y tại x= -1, y = -2
B= 5x^2 - 3x + 3y - 5y^2 tại x=3, y= 1
C= -x^2 + 5x - 2xy + 10y tại x=2 và y=1
3/ tìm GTNN của biểu thức
A=x^2 - 2x -6
B=9x^2 - 6x
C= x^2 + 12x
D= 4x^2 + 5x
E= 5x^2 - 4√5x + 7
Nhờ các bạn giúp mình nhé, 2/9 là mình cần lắm rồi, thanks
bài1: Thực hiện các phép tính sau
a, (2x-y)(4x^2-2xy+y^2)
b, (6x^5y^2-9x^4y^3+15x^3y^4):3x^3y^2)
c, (2x^3-21x^2+67x-60):(x+5)
d, (x^4+2x^3+x-25):(x^2+5)
e, (27x^3-8):(6x+9x^2+4)
a: \(=8x^3-y^3\)
b: \(=2x^2-3xy+5y^2\)
c: \(=\dfrac{2x^3+10x^2-31x^2-155x+222x+1110-1170}{x+5}\)
\(=2x^2-31x+222+\dfrac{-1170}{x+5}\)
e: \(=\dfrac{\left(3x-2\right)\left(9x^2+6x+4\right)}{9x^2+6x+4}=3x-2\)