Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
No name
Xem chi tiết
Bò Vinamilk 3 không (Hộ...
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2022 lúc 15:32

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

Nguyễn Ngọc Diệp
Xem chi tiết
 Đào Xuân Thế Anh
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Khách vãng lai đã xóa
Phí Mạnh Huy
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Khách vãng lai đã xóa
Đỗ Hương Chi
26 tháng 11 2021 lúc 19:30

???????????????????
 

Khách vãng lai đã xóa
Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Linh vk Jimin
Xem chi tiết
Edogawa Conan
18 tháng 10 2017 lúc 20:07

a) Ta có: n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp

Vì tích của 2 số tự nhiên liên tiếp thì chia hết cho 2

    tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

\(\Rightarrow\)n(n+1)(n+2) chia hết cho 3 và 2.

b) n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + n(n+1)(n-1)

Vì n(n+1)(n+2) là tích 3 số tự nhiên liến tiếp \(\Rightarrow\)n(n+1)(n+2) chia hết cho 2 và 3 (theo chứng minh trên) (1)

n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp \(\Rightarrow\)n(n+1)(n-1) chia hết cho 2 và 3 (2)

Từ (1) và (2) \(\Rightarrow\)n(n+1)(2n+1) chia hết cho 2 và 3 (tính chất chia hết của một tổng)

vuductien Trung
Xem chi tiết
Nguyễn Hữu Lực  2
Xem chi tiết
Phạm Thị Hồng Nhung
Xem chi tiết
Nguyễn Quang Hướng
Xem chi tiết
Trịnh Xuân Diện
13 tháng 10 2015 lúc 12:56

n.(n+1).(n+2)

=n.(n+1).[(n+2)+(n-1)]

=n.(n+1).(n+2) + (n-1).n.(n+1)

=[n.(n+1).(n+2)] +[(n-1) .n.(n+1]

Vì n.(n+1).(n+2) Là 3 số tự nhiên liên tiếp

=> tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3

=>n.(n+1) .(n+2) chia hết cho 2 và 3 (1)

Lại có:

 (n-1) .n.(n+1) 

 Là 3 số tự nhiên liên tiếp

=> tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3

=>(n-1) .n.(n+1) chia hết cho 2 và 3 (2)

Tư (1) vs (2) => [n+(n+1)+(n+2)]+[(n-1).n.(n+1)]  chia hết cho 2 và 3

=>n.(n+1).(2n+1) chia hết cho 2 và 3

Nếu đúng thì **** bạn

Tran Thi Lan Huong
12 tháng 10 2016 lúc 18:25

chứng minh rằng n.(n+2013)nchia hết cho 2 với mọi số tự nhiên n

bui viet anh
27 tháng 11 2016 lúc 13:02

dễ nhưng không làm được