hãy so sánh các số hữu tỉ:-1/2 và 0
1.So sánh các số hữu tỉ sau bằng cách nhanh nhất:-13/15 và -14/16
2.Hãy viết 3 số hữu tỉ xen giữa 2 số hữu tỉ -3/5và-5/8
\(-\frac{13}{15}+-\frac{2}{15}=-1;-\frac{14}{16}+-\frac{2}{16}\)
Vì \(-\frac{2}{15}< -\frac{2}{16}\Rightarrow\frac{-13}{15}< -\frac{14}{16}\)
2.Gọi 3 p/số đó là x;y;z
\(-\frac{5}{8}< x< y< z< -\frac{3}{5}\)
\(-\frac{100}{160}< x< y< z< -\frac{96}{160}\)
\(\Rightarrow x=-\frac{99}{160};y=-\frac{98}{160}=-\frac{49}{80};z=-\frac{97}{160}\)
1. Cho các số hữu tỉ .
a/ Hãy so sánh các số hữu tỉ đó .
b/ Viết tập hợp các số hữu tỉ bằng các số hữu tỉ trên .
1) cho 2 số hữu tỉ a/b và c/d (b>0, d>0). chứng tỏ rằng:
nếu a/b <c/d thì ad<bc
nếu ad<bc thì a/b <c/d
2) a: chứng tỏ rằng nếu a/b <c/d(b>0,d>0) thì a/b < a+c/b+d
b: hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
3) cho a,b thuộc z, b>0.so sánh 2 sô hữu tỉ a/b và a+2001/b+2001
4) so sánh các số hữu tỉ sau bằng cách nhanh nhất:
-18/31 và -181818/313131
-13/38 và 29/-88
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Hãy so sánh hai số hữu tỉ a/b và a+1/b+1 biết a và b lá số nguyên và b >0
Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)
\(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)
Xét a>b
=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)
=>\(\frac{a}{b}>\frac{a+1}{b+1}\)
Xét a<b
=>\(\frac{ab+a}{b.\left(b+1\right)}
Cho các số hữu tỉ x=\(\dfrac{a}{b}\) ; y=\(\dfrac{c}{d}\) và z = \(\dfrac{m}{n}\) . Biết ad -bc =1 , cn-bm=1
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = \(\dfrac{a+m}{b+m}\) với b + n \(\ne\)0
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
Cho a, b, c là những số nguyên , b>0. Hãy so sánh 2 số hữu tỉ a/b và c
xảy ra 3 trường hợp:
1)a/b>c
2)a/b=c
3)a/b<c
cho các số hữu tỉ x=a/b, y=c/d, z=m/n
biết ad-bc=1, cn-dm=1 và b,d.n>0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết t= a+m/b+n
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
1. Cho các số hữu tỉ:
\(x_1=\dfrac{20}{-11};x_2=\dfrac{2020}{-1111};x_3=\dfrac{202020}{-111111};x_4=\dfrac{20202020}{-11111111}\)
a) Hãy so sánh các số hữu tỉ đó
b) Viết tập hợp các số hữu tỉ bằng các số hữu tỉ trên
Cho a,b ,n thuộc Z và b > 0 , n > 0 Hãy so sánh số hữu tỉ a/b và a+n/b+n
a)có thể kết luận gì về số hữu tỉ a/b (a,b thuộc Z,b khác 0)
b)cho a,b,n thuộc Z và b>0,n>0
hãy so sánh hai số hữu tỉ a/b và a+n/b+n
c)chứng tỏ rằng trên trục số ,giữa 2 điểm biểu diễn hai số hữu tỉ khác nhau bao giờ cũng có ít nhất một điểm hữu tỉ nữa
d)so sánh
2/7 và 4/9,-17/25 và -14/28;-31/19 và -21/29
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)