Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hương Giang
Bài 1: a. Cho tam giác ABC. Về phía ngoài của tam giác ABC dựng các tam giác vuông cân ABE và ACF đỉnh A. Chứng minh rằng trung tuyến AI của tam giác ABC vuông góc với EF và AI 1/2 EF. b. Cho đường tròn (O) có dây cung AB không qua tâm. C là một điểm bất kì trên cung nhỏ AB, đường thẳng BC cắt tiếp tuyến tại A của đường tròn ở D, tia phân giác của góc BAC cắt (O) tại M. Gọi I là trung điểm AM. Chứng minh OI song song với phân giác trong của góc ADB. Bài 2: Cho tam giác đều ABC cạnh a. Trê...
Đọc tiếp

Những câu hỏi liên quan
Phạm_ Minh Trà 090
Xem chi tiết
Kane Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 6 2023 lúc 23:23

loading...

nguyễn thị hương hiang
Xem chi tiết
nguyễn thúy an
Xem chi tiết
Thanh Nhàn ♫
16 tháng 3 2020 lúc 20:32

a) AE//MC,ME//AC=>AEMC là hình bình hành 
=>ME=AC 
CM tương tự có ADMB là hình bình hành=>AB=MD 
gọi P,Q lần lượt là giao của ABvới ME và AC với MD 
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME 
Chứng minh được tam giác ABC=tam giác MDE(c.g.c) 
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường 
=>AM,BD,CE đồng quy(đpcm) 
Bài 1: 
a)Có góc EAC=90 độ+góc BAC=góc FAB 
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A) 
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF 
=>EC=BF(đpcm) 
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN 
=>AM=AN/2 
Có M là trung điểm của BC=>ABNC là hình bình hành 
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC) 
Mà góc EAF+góc BAC=180 độ 
=>góc EAF=góc ACN 
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA) 
=>góc NAC=góc EFA và AN=EF 
Mà AM=AN/2=>AM=EF/2 
Gọi H là giao của AM và EF 
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA 
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ 
=>AM vuông góc với EF tại H

Khách vãng lai đã xóa
Đào Trọng Chân
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 6 2023 lúc 23:23

loading...

Cassie Natalie Nicole
Xem chi tiết
bùi thu linh
Xem chi tiết
Trịnh Hoài Nam
Xem chi tiết
jibe thinh
Xem chi tiết
Nguyen Dinh Dung
Xem chi tiết