Biết số nguyên tố p>3
Chứng minh: p^2 - 1 chia hết cho 24
bài 1:cho p,p+4 là số nguyên tố(p>3)
chứng minh p+8 là hợp số
bài 2:cho p,8p-1 là số nguyên tố
chứng minh 8p+1 là hợp số
bài 3:chứng minh rằng nếu p là số nguyên tố (p>3)
thì (p-1).(p+1) chia hết cho 24
bài 4:cho p là số nguyên tố(p>3),p+2 là số nguyên tố
chứng minh p+1 chia hết cho 6
P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)
=3(1+2^2+2^4+2^6)
=>đpcm
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p^2-1 chia hết cho 24
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng: (p-2)(p+1) chia hết cho 24.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
Cho số nguyên tố p(p<3) Chứng minh rằng (p-1)(p+2) chia hết cho 24.
phải là (p-1)(p+1) ms ra đc bn xem lại đề giúp mk
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
cho p là số nguyên tố lớn hơn 3 chứng minh rằng 12p^2 - 1 chia hết cho 24
Ta có:
12p2-1
=>12p.12p - 1
=> 144p - 1
144p chia hết cho 24, 1 không chia hết cho 24.
=> 12p^2-1 \(⋮̸\)24
Vậy 12p2-1 \(⋮̸\)24
1. Cho P là số nguyên tố lớn hơn 3.Chứng minh P^2 - 1 chi hết cho 24
2. Chứng minh (a+b+c) chia hết cho 30 thì (a^5+b^5+c^5) chia hết cho 30
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
cho p là số nguyên tố,p>3
Chứng minh rằng:p^2-1 chia hết cho 24
chứng minh x là một số nguyên tố >3.thì x^2 - 1 chia hết cho 24
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
Ta có x là một số nguyên tố lớn hơn 3 ( gt )
Nên x không thể chia hết cho 3 và x^2 chia 3 dư 1
\(\Rightarrow x^2-1⋮3\)
x là nguyên tố lớn hơn 3 nên x là số lẻ suy ra x^2 chia 8 dư 1
\(\Rightarrow x^2-1⋮8\)
\(\Rightarrow x^2-1⋮24\left(đpcm\right)\)