căn17-12 căn2. - căn24-8 căn 8
B1:thực hiện phép tính:
a. [căn(9/20 - căn(1/2)] x căn 2
b.(căn12 + căn27 - căn3) x căn3
c.( căn(8/3) - căn24 + căn(50/3) ) x căn6
a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)
\(=\dfrac{3\sqrt{10}}{10}-1\)
b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)
\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)
c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)
\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)
M=căn x-2 căn 2 / căn x^2-4x căn 2+8 +căn x+2 căn 2/ căn x^2+4x căn2 +8
Rút gọn
a)M= (4+căn3) . căn của 19-8căn3
b)N= căn của 8-căn15/căn30-căn2
Các bạn ơi giúp mik vs mik hok lớp 8 nhưng muốn giải bài toán này :
Câu1: rút gọn biểu thức
a) A = 3 căn 8 - căn 50 - căn (căn2-1) tất cả bình
\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=6\sqrt{2}-5\sqrt{2}-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}-\sqrt{2}+1\)
\(=1\)
1/căn(7+căn24-1) - 1/căn(7-2căn6+1)
\(=\dfrac{1}{\sqrt{6}+1-1}-\dfrac{1}{\sqrt{6}-1+1}=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}=0\)
Thực hiện các phép tính sau a)căn(căn5-căn2)^2+căn(căn5+căn2)^2 b)căn(căn2+1)^2-căn(căn2-5)^2
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
So sánh 12-2 căn 3/6 và căn2
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
B=căn ( căn5 - căn2)^2 .(căn6 - căn2 / 1- căn3 - 5/ căn5)