cả nhà giúp em với
Cho mảng A gồm N số nguyên N<100, từ A1, A2, ... , An
c. Tìm GTLN của mảng và vị trí
b. Tính tổng các số dương có trong mảng
c. Đưa ra các số chia hết cho k có trong mảng với k nguyên
d. Tìm GTNN của mảng
#include <bits/stdc++.h>
using namespace std;
long long a[1000],i,n,ln,t,k,nn;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
ln=LLONG_MIN;
for (i=1; i<=n; i++) ln=max(ln,a[i]);
cout<<"So lon nhat la: "<<ln<<endl;
cout<<"VI tri la: ";
for (i=1; i<=n; i++) if (ln==a[i]) cout<<i<<" ";
cout<<endl;
t=0;
for (i=1; i<=n; i++)
if (a[i]>0) t+=a[i];
cout<<"Tong cac so duong la: "<<t<<endl;
cin>>k;
for (i=1; i<=n; i++)
if (a[i]%k==0) cout<<a[i]<<" ";
cout<<endl;
nn=LLONG_MAX;
for (i=1; i<=n; i++)
nn=min(nn,a[i]);
cout<<nn;
return 0;
}
Tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của hai số
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3 .
Ra 5,4,1
Mình chỉ ra kết quả thôi, còn trình bày lằng nhằng lắm
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.
Tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của chúng.
1;2;3 đó bạn
mink nha
6,4,1 các cậu ạ mik cũng ko chắc nữa
Tìm ba số nguyên dương biết rằng tổng của 3 số ấy bằng tích của chúng
Tìm ba số nguyên dương biết rằng tổng của 3 số ấy bằng tích của chúng
Tìm GTNN và GTLN của tích xy với x, y là các số nguyên dương và x+y=2009
Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)x \(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.
Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.
Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.
như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1
tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của chúng
Ai đúng cho 3 tick
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có a + b + c = abc/2
Giả sử a≤b≤ca≤b≤c thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại)
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn)
a =2, b = 2, c = 4 (Thỏa mãn)
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn)
5, ab = 2..........................................( Không thỏa mãn)
6, ab = 1 ..........................................( Không thỏa mãn
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
học tốt
Mà bn ơi làm s suy ra đc c vậy
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.
1. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là chẵn hay lẻ?
2. Tổng của ba số nguyên tố bằng 1012. Tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Ta có: Gỉa sử 3 số nguyên tố đó đều là lẻ thì lẻ+lẻ+lẻ=lẻ
⇒Có một số nguyên tố chẵn
Chỉ 2 là số nguyên tố chẵn duy nhất
⇒Số nhỏ nhất trong ba số nguyên tố là 2
Tìm 3 số nguyên dương biết tổng ba số đó bằng một nửa tích của chúng
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.