Chứng minh rằng: Nếu một tứ giác có các đường chéo và các đoạn thẳng nối trung điểm của các cặp cạnh đối đồng quy thì tứ giác đó là một hình bình hành
a/ Chứng minh rằng đoạn thẳng nối trung điểm 2 đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại 1 điểm
b/ Dùng định lý trên chứng tỏ rằng nếu một tứ giác có các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành
a, Chứng minh rằng đoạn thẳng nối trung điểm 2 đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại 1 điểm.
b, Dùng định lí trên chứng tỏ rằng nếu 1 tứ giác có các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm 2 đng chéo thì tứ giác đó là hình bình hành.
SGK Nâng cao và phát triển toán 8 ak!!!
Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )
Chứng minh : Tứ giác có giao điểm các đường chéo trùng với giao điểm các đoạn thẳng nối trung điểm các cạnh đối diện thì tứ giác đó là hình bình hành.
Chứng minh : Tứ giác có giao điểm các đường chéo trùng với giao điểm các đoạn thẳng nối trung điểm các cạnh đối diện thì tứ giác đó là hình bình hành.
Chứng minh : Tứ giác có giao điểm các đường chéo trùng với giao điểm các đoạn thẳng nối trung điểm các cạnh đối diện thì tứ giác đó là hình bình hành.
Giúp mình với
Chứng minh :
a) Trong 1 HBH thì giao điểm của các đường chéo trùng với giao điểm của các đoạn thẳng nối trung diểm của các cạnh đối diện.
b) Nếu giao điểm của hai dduownhf chéo của một tứ giác trùng với giao điểm của các đơạn thẳng nối trung điểm của các cạnh đối diện thì tứ giác đó là hình bình hành.
THANKS
a/ Chứng minh rằng đoạn thẳng nối trung điểm 2 đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại 1 điểm
b/ Dùng định lý trên chứng tỏ rằng nếu một tứ giác có các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành
Bài 1: Cho tam giác nhọn ABC có BC = 2AB. Lấy điểm D sao cho ABCD là hình bình hành. Gọi E là hình chiếu của C trên AB, M là trung điểm của AD. Chứng minh rằng góc BAD = 2 x góc AEM
Bài 2. Chứng minh rằng trong một tứ giác, đoạn thẳng nối trung điểm hai đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác đồng quy.
Bài 3. Cho điểm D nằm trong tam giác ABC. Vẽ các tam giác đều BDE, CDF (E, D, F nằm cùng phía đối với BC). Biết rằng tứ giác AEDF là hình bình hành. Chứng minh rằng
a) góc BDC = góc BEA và tam giác BDC = tam giác BEA.
b) Tam giác ABC là tam giác đều.
Giúp mik với nha !!! Tí nữa mik cần gấp rồi !!!
C/m rằng nếu tổng độ dài 2 đoạn thẳng nối các trung điểm của các cạnh đối diện của một tứ giác bằng một nữa chu vi của tứ giác đó thì tứ giác đó là hình bình hành
Gọi đoạn nối trung điểm hai cạnh đối diện của một tứ giác lồi là đường trung bình của tứ giác đó. Chứng minh rằng nếu tổng độ dài hai đường trung bình của một tứ giác bằng nửa chu vi thì tứ giác đó là một hình bình hành
Gọi M. N, P và Q theo thứ tự là trung điểm các cạnh AB, CD, BC và DA của tứ giác lồi ABCD
Khi đó :
\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\) và \(\overrightarrow{PQ}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{CD}\right)\)
Ta có : \(\left|\overrightarrow{MN}\right|+\left|\overrightarrow{PQ}\right|=\frac{1}{2}\left(\left|\overrightarrow{AD}+\overrightarrow{BC}\right|+\left|\overrightarrow{BA}+\overrightarrow{CD}\right|\right)\)
\(\le\frac{1}{2}\left(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|+\left|\overrightarrow{BA}\right|+\left|\overrightarrow{CD}\right|\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{BC}\) và \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)
Suy ra điều cần chứng minh