Tính S = 1 + 3 + 3^2 + 3^3 +...+ 3^2017
Tính S = 1 + 1/2.(1 + 2) + 1/3.(1 + 2 +3) + 1/4.(1 + 2 +3 + 4) +....+ 1/2017.(1 + 2 + 3 +...+ 2017)
TÍnh
S=1+1/2(1+2)+1/3(1+2+3)+1/4+(1+2+3+4)+.....+1/2017(1+2+3+...+2017)
S= 1+5+9+13+........+2013 +2017 tính tổng
cho A= 1+3+3^2+3^3+....+3^2016 và B = 3^2017 tinh B-A
a) Ta có:
S = 1 + 5 + 9 + 13 + ... + 2013 + 2017
S = (2017 + 1)[(2017 - 1) : 4 + 1] : 2
S = 2018.505 : 2
S = 1019090 ÷ 2
S = 509545
b) Ta có:
A = 1 + 3 + 32 + 33 + ... + 32016
3A = 3 + 32 + 33 + 34 + ... + 32017
3A - A = (3 + 32 + 33 + 34 + ... + 32017) - (1 + 3 + 32 + 33 + ... + 32016)
2A = 32017 - 1
A = \(\frac{3^{2017}-1}{2}\)
=> B - A = 32017 - \(\frac{3^{2017}-1}{2}\)
=> B - A = 32017 - \(\frac{3^{2017}}{2}-\frac{1}{2}\)
=> B - A = \(\frac{3^{2017}}{2}-0,5\)
Tính tổng \(S=\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{2017}{2017^4+2017^2+1}\)
Tính tổng:
a) S = 1 + 2 + 2^2 + 2^3 +.........+ 2^2017
b) 3 + 3^2 + 3^3 + .........+ 3^2017
c) 4 + 4^2 + 4^3 + .........+ 4^2017
3 bạn làm xong nhanh nhất thì mik sẽ tick cho nha :D
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
Tính: \(a,S=\frac{1+3+3^2+3^3+...+3^{2016}}{1-3^{2017}}\)
Đặt \(A=1+3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A=3+3^2+3^3+3^4...+3^{2017}\)
\(\Rightarrow3A-A=3+3^2+3^3+3^4...+3^{2017}-1-3-3^2-3^3-3^{2016}\)
\(\Rightarrow2A=3^{2017}-1\)
\(\Rightarrow A=\frac{1}{2}\left(3^{2017}-1\right)\)
\(\Rightarrow A=\frac{-1}{2}\left(1-3^{2017}\right)\)
\(\Rightarrow S=\frac{-1}{2}\)
Đặt A = 1 + 3 + 3^2 + 3^3 + ... + 3^2016
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^2017
=> 3A - A = 3^2017 - 1
=> 2A = 3^2017 - 1
=> A = (3^2017 - 1) : 2
tính tổng S=2018+2018/1+2+2018/1+2+3+...+2018/1+2+3+..+2017
9219321938921839289382983928392839238929832
Tính tổng
A) S1= 3+4+6+8+...+2016+2017
B) S2= 2+3+5+7+...+2017+2018
thằng Lê Mạnh Tiến Đạt chuẩn bị trả lời nè
a, \(S_1=3+4+6+8+...+2016+2017\)
\(S_1=3+\left(4+6+8+...+2016\right)+2017\)
Số số hạng của (4 + 6 + 8 + ... + 2016) là:
\(\left(2016-4\right)\div2+1=1007\)
Tổng của (4 + 6 + 8+ ... + 2016) là:
\(\frac{\left(4+2016\right).1007}{2}=1017070\)
\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)
b, \(S_2=2+3+5+7+...+2017+2018\)
\(S_2=2+\left(3+5+7+...+2017\right)+2018\)
Số số hạng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{2017-3}{2}+1=1008\)
Tổng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{\left(3+2017\right).1008}{2}=1018080\)
\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)
a) S1 = 3 + 4 + 6 + 8 + ... + 2016 + 2017
S1 = 3 + (4 + 6 + 8 + ... + 2016) + 2017
S1 = 2017 + 3 + {(2016 + 4) x [(2016 - 4) : 2 + 1] : 2}
S1 = 2020 + 1017070
S1 = 1019090
b)S2 = 2 + 3 + 5 + 7 + ... + 2017 + 2018
S2 = (2 + 2018) + (3 + 5 + 7 + ... + 2017)
S2 = 2020 + {[2017 + 3] x [(2017 - 3) : 2 + 1] : 2
S2 = 2020 + 1018080
S2 = 1020100
S=1+2+...+2^2017
S=3+3^2+...+3^2017
S=4+4^2+...+4^2017
S=5+5^2+...+5^2017
ai làm xong nhanh nhất mình tặng tích cho càng nhanh càng tốt.
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
tính S = 1 + 3 + 3 mũ 2 +..... + 3 mũ 2017
giúp mình với cần gấp
S = 1 + 3 + 32 + 33 + ..... + 32017
\(\Rightarrow\)3S = 3 + 32 + 33 + 34 + ...... + 32018
\(\Rightarrow\)3S - S = (3 + 32 + 33 + 34 + ...... + 32018) - (1 + 3 + 32 + 33 + ..... + 32017)
\(\Rightarrow\)2S = 32018 - 1
\(\Rightarrow\)S = \(\frac{3^{2018}-1}{2}\)
S = 1 + 3 + 3^2 + ... + 3^2017
3S = 3 + 3^2 + 3^3 + ... + 3^2018
3S - S = 2S = ( 3 + 3^2 + 3^3 + ... + 3^2018 ) - ( 1 + 3 + 3^2 = ... + 3^2017 )
2S = 3^2018 - 1
S = 3^2018 - 1 / 2
\(3S=3+3^2+3^3+...+3^{2018}\)
\(3S-S=2S=3+3^2+3^3+...+3^{2018}-1-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-1\)
\(S=\frac{3^{2018}-1}{2}\)