Tìm các số nguyên x,y,z thỏa mãn x^2+y^2+z^2+14=2x+4y+6z
Cho x,y,z thỏa mãn \(x^2+y^2+z^2-2x-4y+6z\le2\). Tìm GTNN và GTLN của
\(P=x+2y-2z\)
Cho x,y,z thỏa mãn x^2+y^2+z^2 ≤ 2x+4y+6z-13
CMR 8 ≤ x+2y+2z ≤ 14
Mọi người giúp em với ạ
điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)
áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)
[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)
=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)
Cho số thực x, y, z thỏa mãn \(x^2+y^2+z^2-2x+4y-6z=15\). Chứng minh rằng: \(\left|2x-3y+4z-20\right|\le29\)
Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).
Áp dụng bđt Cauchy - Schwarz ta có:
\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)
Cho Các số thực dương x, y, z thỏa mãn x +y +z=9 (x>1, y>2, Z>3)
Cmr \(\frac{x}{y^2-4y+5}+\frac{y-1}{z^2-6z+10}+\frac{z-2}{x^2-2x+2}\ge3\)
Tìm x,y,z biết x^2+y^2+z^2-2x-4y+6z=14
mọi người giúp em bài này ạa
Các số thực x, y, z thỏa mãn \(x^2+y^2+z^2-2x+4y-6z=15\). Chứng minh rằng \(\left|2x-3y+4z-20\right|\le29\)
cho x,y,z thỏa mãn x2+4y2+9z2=2x+4y+6z-3
vậy x*y*z=...................................
nhập phân số dưới dạng tối giản
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2