Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị hoa Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 12:55

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

phạm minh quang
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
21 tháng 8 2018 lúc 17:28

1. Do góc BOC kề bù với góc AOB 
=> Tia OA và tia OC đối nhau 

Do góc AOD và góc AOB kề bù 
=> tia OD và tia OB đối nhau 

=> góc BOC và góc AOD là 2 góc đối đỉnh 

Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC 

=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2 

mà góc AON = góc AOB + góc BON 
=> góc AON = 135* + 45*/2 

=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180* 

=> góc MON = 180* 

=> OM , ON là 2 tia đối nhau

Ngoc Anhh
21 tháng 8 2018 lúc 19:55

2. Gọi 4 góc cần tìm là .O1,O2,O3O4

Giả sử  :O1+O2+O3=250°46'

=> O4=360°-250°46'=109°14'

=>O2=O4= 109°14' (đối đỉnh )

O1=O3\(\frac{250°46'-109°14'}{2}=70°46'\)

Công chúa hoa oải hương
Xem chi tiết
NGÂN LILY
Xem chi tiết
Me
16 tháng 9 2020 lúc 12:48

Bài 1 :                                                             Bài giải

A B C D O

Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)

\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\) 

                                                                                                                        \(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)

\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)

Khách vãng lai đã xóa
Me
16 tháng 9 2020 lúc 12:59

Bài 2 :                                                Bài giải

N P Q M O

Ta có: 

\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )

\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )

Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)

Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)

                                            \(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)

                                                                                        \(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)

\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)

\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)

Khách vãng lai đã xóa
Nguyễn Ngọc Minh TRâm
Xem chi tiết
nguyen ngoc linh a
Xem chi tiết
Linh nguyễn
Xem chi tiết
Lê Nguyễn Khánh Huyền
Xem chi tiết
Alex Queeny
Xem chi tiết
Nguyễn Linh Chi
24 tháng 8 2019 lúc 16:57

Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!