tìm các cặp số nguyên tố [x,y] thỏa mãn
x^2-2y^2=1
tìm các cặp số nguyên tố x,y thỏa mãn : x^2 - 2y = 1
\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.
\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.
\(\Rightarrow y=2,x=3\)
Tìm các cặp số nguyên tố (x,y) thỏa mãn :(x-1)(x+1)=2y2
Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
Tìm các cặp số nguyên tố x, y thỏa mãn: x2 - 2y2 =1
Tìm tất cả các cặp số nguyên tố (x;y) thỏa mãn: x^2 - 2y^2=1
\(x^2-2y^2=1\)
\(\Leftrightarrow x^2=2y^2+1\)
Vì \(x^2\)là số chính phương lẻ
\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố
\(\Rightarrow y=2;x=3\)
Tìm các cặp số (x;y) biết x và y đều là nguyên tố thỏa mãn : x^2 - 2y^2 = 1.
Ta co: x2-2y2 = 1
Vi x,y deu la so nguyen to nen: x2\(\ge\) 4 2y2\(\ge\)8
Vi vay: x2-2y2 < 0 (trái với đề bài đã cho)
Suy ra: Khong co gia tri nao cuar x,y ca
Tìm tất cả các cặp số nguyên tố (x;y) thỏa mãn:x2-2y2=1
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
x2-2y2=1
=>x2-1=2y2
=>x2-12=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
do đó x=2+1=>x=3
Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)
cách này dễ hiểu hơn nè
Tìm các cặp số x, y biết x, y đều là số nguyên tố thỏa mãn : x2 - 2y2 = 1
Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
a) Tìm cặp số nguyên (x;y) thỏa mãn:x-y-6=2xy
b) Tìm mọi số nguyên tố x,y thỏa mãn: x2- 2y2=1
tìm các số nguyên x y thỏa mãnx^2 +xy-2xy-3x=3