Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Ngọc Uyển
Xem chi tiết
Đặng Mai Nhi
Xem chi tiết
Nguyễn Trần Thành Đạt
27 tháng 9 2016 lúc 17:54

Ta gọi 2 số lẻ liên tiếp đó là n+1;n+3

=> Hiệu hai bình phương hai số đó là:

(n+3)2-(n+1)2

=(n+3-n-1).(n+3+n+1)

=2.(2n+4)

=2.(2(n+2))

=2.2.(n+2)

=4.(n+2)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2018 lúc 16:38

G ọ i   h a i   s ố   l ẻ   l i ê n   t i ế p   l à   :       2 k - 1   ;   2 k + 1 k ∈ N *   T h e o   b à i   r a   t a   c ó 2 k + 1 2 - 2 k - 1 2 =   4 k 2 + 4 k + 1 - 4 k 2   + 4 k   -   1 = 4 k   +   4 k =   8 k   ⋮   8

Đáp án cần chọn là :A

Nguyễn Đức Tố Trân
Xem chi tiết
Cố lên Tân
25 tháng 6 2015 lúc 9:14

Gọi 2k+1 va 2p+1 la các số lẻ 
hieu cac binh phuong cua 2 so le la`: 
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

Minh Triều
25 tháng 6 2015 lúc 9:13

sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8

Cố lên Tân
Xem chi tiết
Ác Mộng
25 tháng 6 2015 lúc 9:18

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

Yubi
25 tháng 6 2015 lúc 9:19

Giả

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8.

Dương Khả Vi
25 tháng 6 2015 lúc 9:21

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

đúng ko

Tran Thi Hang
Xem chi tiết
Minh Triều
19 tháng 7 2015 lúc 13:29

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

trần bảo an
19 tháng 7 2015 lúc 13:13

de thi lam di 

noi vay toi cung noi duoc

 

Minh Triều
19 tháng 7 2015 lúc 13:17

thang Tran làm ik tớ ko làm

Đức Gaming
Xem chi tiết
CoRoI
Xem chi tiết
Trần Tuyết Như
9 tháng 8 2015 lúc 19:20

1) Gọi 2 số lẻ đó là a và b.

Ta có:

\(a^3-b^3\) chia hết cho 8 

=>  \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8

=> \(\left(a-b\right)\) chia hết cho 8    (đpcm)

bui duy khanh
10 tháng 10 2016 lúc 18:40

8 k minh

hoang phuc
10 tháng 10 2016 lúc 18:46

8

tk nhe

bye

Phương Anh Nguyễn
Xem chi tiết
Không Tên
20 tháng 7 2018 lúc 20:47

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

Nguyễn Thị Anh Trâm
Xem chi tiết