cho S =1/5^2+1/5^4+1/5^6+...+1/5^2014 chứng minh S<1/24
cho S=1/5^2+1/5^4+1/5^6+1/5^8+...+1/5^2014.chung minh S<1/24
Ta có: \(5^2S=1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5^2S-S=1-\frac{1}{5^{2014}}\)
\(=>S=\frac{1}{24}-\frac{1}{24.5^{2014}}< \frac{1}{24}\)
Cho tổng \(S=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+\frac{1}{5^8}+...+\frac{1}{5^{2014}}\)
Chứng minh \(S
Chứng minh S=1/2-1/3+1/4-1/5+1/6-1/7+...+1/2012-1/2013+1/2014 <2/5
Cho tổng S = \(\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+\frac{1}{5^8}+...+\frac{1}{5^{2014}}\)
Chứng minh S < \(\frac{1}{24}\)
ko can biet: làm đc mk làm lâu r :<
\(\frac{S}{25}=\frac{1}{5^4}+\frac{1}{5^6}+\frac{1}{5^8}+....+\frac{1}{5^{2016}}\)
\(S-\frac{S}{25}=\frac{1}{5^2}-\frac{1}{5^{2016}}<\frac{1}{5^2}\)
\(\frac{24S}{25}<\frac{1}{25}\)=> dpcm
cho S=1+5^2+5^4+5^6+....+5^2020. Chứng minh S chia hết cho 313
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)
Cho S= 1+ 5^2 + 5^4 + 5^6 + .... + 5^2020 . Chứng minh rằng S chia hết cho 313
Answer:
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)
\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)
\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)
\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)
Mà ta có: \(S=16276⋮313\)
Vậy \(S⋮313\)
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
1, Cho: S=4+5^2+5^3+.............5^120
Chứng Minh : S:6 , S:31
Chứng minh S =1/5^2 -1/5^4+1/5^6-...+1/5^4n-2+...+1/5^2010-1/5^2012<1/26