\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)