d*)(a+b)(c+d)-(a+d)(b+c)
e*)(a+b)(c-d)-(a-b)(c+d)
f*)(a+b)2-(a-b)2
a/b = c/d=e/f CMR:
a) a/b=c/d=e/f=a+c+e/b+d+f
b) a/b=c/d=e/f =a-c+e/b-d+f
c) a/b=c/d=e/f =a-c-e/b-d-f
Bài 1: bỏ dấu ngoặc rồi rút gọn biểu thức a, - ( - a + c - d ) - ( c - d + d) b, - ( a + b - c + d ) + (a - b - c - d) c, a( b - c - d ) - a( b + c -d ) d*, (a + b).(c+d) - ( a+d).(b+c) e*, (a+b).(c-d) - (a-b).(c+d) f*, (a+b)2 - (a-b)2
a, -( -a + c - d) - ( c - d + d) = a - c + d - c + d - d = a + d
b, - ( a+b-c+d) + (a-b-c-d) = -a -b+c-d + a-b-c-d = -2b + (-2c)= -2(b+c)
d*)(a+b)(c+d)-(a+d)(b+c)
e*)(a+b)(c-d)-(a-b)(c+d)
f*)(a+b)2-(a-b)2
Cho a/b=c/d cm rằng a)a/a-b=c/c-d
b) a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.b/bd=a^2+c^2/b^2+d^2
E) a.b/c.d=a^2-b^2/c^2-d^2
F) a.b/c.d=(a-b)^2/(c-d)^2
a) - ( - a + c – d ) – ( c – a + d ) b) – ( a + b - c + d ) + ( a – b – c –d ) c) a( b – c – d ) – a ( b + c – d )
d)(a+ b) ( c + d) – ( a + d ) ( b + c ) e)( a + b ) ( c – d ) – ( a – b ) ( c + d ) f) ( a + b ) ^2 – ( a – b )^2
\(-(-a+c-d)-(c-a+d)\)
\(=a-c+d-c+a-d\)
\(=(a+a)-(c+c)+(d-d)\)
\(=2a-2c\)
\(-(a+b-c+d)+(a-b-c-d)\)
\(=-a-b+c-d+a-b-c-d\)
\(=(-a+a)-(b+b)+(c-c)-(d+d)\)
\(=0-0+2c-2d\)
\(=2c-2d\)
\(a(b-c-d)-a(b+c-d)\)
\(=a(b-c-d-b+c+d)\)
\(=a.0=0\)
\((a+b)(c+d)-(a+d)(b+c)\)
\(=a(c+d)+b(c+d)-a(b+c)+d(b+c)\)
\(=ac+ad+bc+bd-ab-ac-bd-dc\)
\(=(ac-ac)+(bd-bd)+ad-ab-bc-dc\)
\(=a(d-b)-c(b+d)\)
\((a+b)(c-d)-(a-b)(c+d)\)
\(=a(c-d)+b(c-d)-a(c+d)+b(c-d)\)
\(=ac-ad+bc-bd-ac-ad+bc-bd\)
\(=(ac-ac)-(ad+ad)+(bc+bc)-(bd+bd)\)
\(=2ad+2bc-2bd\)
\((a+b)^2-(a-b)^2\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=2ab+2ab=4ab\)
Bỏ dấu ngoặc rồi rút gọn biểu thức
a) -(-a+c-d)-(c-a+d)
b) -(a+b-c+d)+(a-b-c-d)
c) a(b-c-d)-a(b+c-d)
d*) (a+b)(c+d0-(a+d)(b+c)
e*) (a+b)(c-d)-(a-b)(c+d)
f*) (a+b)^2-(a-b)^2
Bỏ dấu ngoặc rồi rút gọn biểu thức
a) -(-a+c-d)-(c-a+d)
b) -(a+b-c+d)+(a-b-c-d)
c) a(b-c-d)-a(b+c-d)
d*) (a+b)(c+d0-(a+d)(b+c)
e*) (a+b)(c-d)-(a-b)(c+d)
f*) (a+b)^2-(a-b)^2
a)-(-a+c-d)-(c-a+d)=a-c+d-c+a-d=(a+a)-(c+c)+(d-d)=2a-2c=2(a-c)
b)-(a+b-c+d)+(a-b-c-d)=-a-b+c-d+a-b-c-d=(-a+a)-(b+b)+(c-c)-(d+d)=0-2b+0-2d=-2(b-d)
c)a(b-c-d)-a(b+c-d)=ab-ac-ad-ab-ac+ad=(ab-ac)-(ac+ac)-(ad-ad)=2ac
d)đề sai
e)(a+b)(c-d)-(a-b)(c+d)=ac+b-ad+b-(ac-b+ad-b)=ac+b-ad+b-ac+b-ad+b=(ac-ac)+(b+b+b+b)-(ad+ad)=4b-2ad=2(2b-ad)
f)(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=a2+2ab+b2-a2+2ab-b2=(a2-a2)+(2ab+2ab)+(b2-b2)=4ab
mk k chắc đâu
-(a+b-c)+(b+c-d)-(c+d-a)
Bài 1: bỏ dấu ngoặc rồi rút gọn biểu thức
a, - ( - a + c - d ) - ( c - d + d)
b, - ( a + b - c + d ) + (a - b - c - d)
c, a( b - c - d ) - a( b + c -d )
d*, (a + b).(c+d) - ( a+d).(b+c)
e*, (a+b).(c-d) - (a-b).(c+d)
f*, (a+b)2 - (a-b)2
tích mình với
ai tích mình
mình tích lại
thanks
Cho hình bình hành $A B C D$. Trên các tia $A D, A B$ lân lượt lây các điêm $F, E$ sao cho $A D=\dfrac{1}{2} A F, A B=\dfrac{1}{2} A E$. Chứng minh: a) Ba điểm $F, C, E$ thẳng hàng. b) Các tứ giác $B D C E, B D F C$ là hình bình hành.