tìm x
\(x^3+x^2+x+1=0\)
tìm x biết
a) x^ 3 + x ^2 + x + 1 = 0;
b) x^ 3 - x^ 2 - x + 1 = 0;
c) x^ 2 - 6x + 8 = 0; .
b) \(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x+1=0\)
\(\Leftrightarrow x=1\) hoặc \(x=-1\)
c) \(x^2-6x+8=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
(do \(x^2+1\ge1>0\))
a: Ta có: \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
b: Ta có: \(x^3-x^2-x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Bài 5: Tìm x (Giải phương trinh)
a)x^3-13x=0
b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0
d) x + 1 = (x + 1)2
e) x + 5x2 = 0
f) x3 + x = 0
Bài 5: Tìm x (Giải phương trình)
a)x^3-13x=0 b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0 d) x + 5x2 = 0
d) x + 1 = (x + 1)2 e) x3 + x = 0
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)
d) Ta có: \(5x^2+x=0\)
\(\Leftrightarrow x\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)
1, Tìm x, biết
a, | x + 1 | + | x + 2| + | x + 3 | = x
b, | x - 3 | + | x - 1 | =3
2, Cho M = x + 2 \ x - 3
a, Tìm x để M = 0
b, Tìm x để M < 0
c, Tìm x để M > 0
tìm x: part 1 : a,(x^3)^2-(x+1)(x-1)=1 b,(x-2)^2-3(x-2)=0 c,(x+2)(x^2-2x+4)-x(x^2+2)=15 d,(x+1)^2-(x+1)(x-2)=0 e,4x(x-2017)-x+2017=0 f,(x+4)^2-16=0 part 2: a,x^3+27+(x+3)(x-9)=0 b,(2x-1)^2-4x^2+1=0 c,2(x-3)+x^2-3x=0 d,x^2-2x+1=6x-6 e,x^3-9x=0
1, tìm x biết :
[ x-3 ] + [ x-2 ] + [ x-1 ] + ... + [ x+5 ] = 0
2, tìm x sao cho :
[ x-7 ] . [ x+3 ] < 0
3, cho biểu thức : A = [ 5.x^2 - 8.x^2 - 9.x^2 ] . [ 3y^3] . tìm x, y để A > hoặc = 0
cậu chia từng câu ra cho mình nhé
Tìm x
1/(x+12).(3-x)=0
2/(-x+5).(3-x)=0
3/x.(2+x).(7-x)=0
4/(x-1.(x+2).(-x-3)=0
1/ ( x+12)(3-x)=0
=> \(\orbr{\begin{cases}x+12=0\\3-x=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-12\\x=3\end{cases}}\)
xin lỗi nhé, nãy ấn nhầm:
\(\left(x+12\right)\left(3-x\right)=0\)
<=> \(\orbr{\begin{cases}x+12=0\\3-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-12\\x=3\end{cases}}\)
Vậy...
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Tìm x biết:
1> (x+1)^2-(x+2)^2=3
2> (x-1)(x+1)-(x-3)^2=0
3> (x+1)^3-x^2(x+2)-(x-1)^2=0
4> (x+1)(x^2-x+1)-x^2(x+2)+2(x+3)^2=0
Tìm x
1. x(x+7)=0
2. (x+12)(x-3)=0
3. (-x+5)(3-x)=0
4. x(2+x)(7-x)=0
5. (x-1)(x+2)(-x-3)=0
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
1. x ( x + 7 ) = 0
( 1 ) x = 0
( 2 ) x + 7 = 0 => x = -7
S = { -7 ; 0 }
2. ( x + 12 ) ( x - 3 ) = 0
( 1 ) x + 12 = 0 => x = -12
( 2 ) x - 3 = 0 => x = 3
S = { -12 ; 3 }
3. ( -x + 5 ) ( 3 - x ) = 0
( 1 ) -x + 5 = 0 => -x = -5 => x = 5
( 2 ) 3 - x = 0 => x = 3
S = { 3 ; 5 }
4. x ( 2 + x ) ( 7 - x ) = 0
( 1 ) x = 0
( 2 ) 2 + x = 0 => x = -2
( 3 ) 7 - x = 0 => x = 7
S = { -2 ; 0 ; 7 }
5. ( x - 1 ) ( x + 2 ) ( -x - 3 ) = 0
( 1 ) x - 1 = 0 => x = 1
( 2 ) x + 2 = 0 => x = -2
( 3 ) -x - 3 = 0 => -x = 3 => x = -3
S = { -3 ; -2 ; 1 }
tìm x
1/ x.(x+7)=0
2/ (x+12).(x-3)=0
3/ (-x+5).(3-x)=0
4/ x.(2+x).(7-x)=0
5/ (x-1).(x+2).(-x-3)=0
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)