Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Nguyễn Hải Minh
Xem chi tiết
Đinh Hoàng Nhất Quyên
Xem chi tiết
Xem chi tiết
Ruby
Xem chi tiết
Thuỳ Linh Vũ
Xem chi tiết
Xuân Tuấn Trịnh
28 tháng 4 2017 lúc 20:41

Ta có: f(-2)=16a-8b+4c-2d+e

f(1)=a+b+c+d+e(2)

5a+c=3b+d

=>20a+4c=12b+4d

=>f(-2)=12b+4d-8b-2d-4a+e=4b+2d-4a+e

5a+c=3b+d

=>3b-4a=a+c-d

=>f(-2)=a+b+c+d+e(2)

Từ (1) và (2) => f(-2).f(1)=(a+b+c+d+e)2\(\ge0\)với mọi a,b,c,d,e(đpcm)

♚ ~ ๖ۣۜTHE DEVIL ~♛(◣_◢)
Xem chi tiết
Hoàng Nguyễn Văn
7 tháng 3 2019 lúc 15:32

f(x0)=?.

Hoàng Nguyễn Văn
7 tháng 3 2019 lúc 15:33

2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6

Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm

ahhii

Lê Thị Nhung
29 tháng 2 2020 lúc 17:17

Cho \(F\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(F\left(x_0\right)=0\Rightarrow F\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(G\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow G\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow G\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0) 

Khách vãng lai đã xóa
fghj
Xem chi tiết
Tran Minh Hai
8 tháng 7 2020 lúc 21:54

Gọi số khẩu trang y tế làm được mỗi ngày là a(a>0) cái/ngày

Số lượng khẩu trang y tế làm được trong 20 ngày là 20a (cái).

Số lượng khẩu trang 3M làm được trong 20 ngày là 10000-20a (cái).

Số khẩu trang 3M làm được trong 1 ngày là : (10000-20a)/20 (cái/ngày).

Theo đề bài, ta có phương trình :

a- (10000-20a)/20=100

<=>20a/20-(10000-20a)/20=100

<=>(20a-10000+20a)/20=100

<=>(40a-10000)/20=100

<=>40a-10000=2000

<=>40a=12000

<=>a=300(cái/ngày).

Vậy đơn vị làm được 300 chiếc khẩu trang y tế 1 ngày và làm được 300-100=200 cái khẩu trang 3M trong 1 ngày.

Trần Nhã Uyên
Xem chi tiết
Cô Hoàng Huyền
30 tháng 1 2018 lúc 15:16

Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)

\(=36a^2-6b^2+c^2-6ab+13ac+bc\)

Thay b = - 13a - 2c, ta có

 \(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)

\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)

\(-25\left(6a+c\right)^2\le0\forall a;c\)

Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)

Doãn Minh Cường
31 tháng 1 2018 lúc 9:12

Cách này đơn giản hơn:  Có   \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\) 

Do đó   \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên 

                                      \(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)