Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lee ái
Xem chi tiết
Đào Thu Hà
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Thái Lê
Xem chi tiết

giai di em

Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
2 tháng 9 2015 lúc 21:08

Theo bất đẳng thức Bunhicốpxki ta có \(\left(x^2+4y^2\right)\left(4+1\right)\ge\left(2x+2y\right)^2=4\left(x+y\right)^2\to\left(x+y\right)^2\le\frac{5}{4}.\) Từ đây ta suy ra \(\left|x+y\right|\le\frac{\sqrt{5}}{2}\to-\frac{\sqrt{5}}{2}\le x+y\le\frac{\sqrt{5}}{2}.\)

Ta thấy \(x+y=\frac{\sqrt{5}}{2}\) khi \(x=4y=\frac{2}{\sqrt{5}}\)  và \(x+y=-\frac{\sqrt{5}}{2}\) khi \(x=4y=-\frac{2}{\sqrt{5}}\) .

Do đó giá trị lớn nhất của \(D\)\(\frac{\sqrt{5}}{2}\) và giá trị bé nhất của \(D\)\(-\frac{\sqrt{5}}{2}.\)

Dương Chí Thắng
Xem chi tiết
Nguyễn Minh Quang
17 tháng 8 2021 lúc 23:33

áp dụng bất đẳng thức Bunhia ta có :

\(\left(x+4y\right)^2\le\left(5^2+12^2\right)\left(\frac{x^2}{25}+\frac{y^2}{9}\right)=169\)

Vậy \(-13\le x+4y\le13\Rightarrow-8\le P\le18\)

vậy min bằng -8 

max bằng 18

Khách vãng lai đã xóa
ITACHY
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Luật Lê Bá
Xem chi tiết
Nguyễn Thị Hồng Nhung
13 tháng 9 2017 lúc 12:35

Hình như sử dụng Bu-nhi -a hay sao ý

help me
Xem chi tiết
help me
12 tháng 7 2016 lúc 20:59

nhanh lên các bạn nhé mai mình đi học rồi