Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tiểu Hàn
Xem chi tiết
Trương Tiểu Hàn
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 19:53

\(A=4x^2-4xy+5y^2+20x-6y+2044\)

\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)

\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)

\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)

Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Tuấn Anh
5 tháng 11 2019 lúc 19:59

Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)

            \(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)

            \(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)

Vì...\(\Rightarrow A\ge2018\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)

Khách vãng lai đã xóa
Trương Tiểu Hàn
5 tháng 11 2019 lúc 20:48

Mấy bạn giải chi tiết ra giùm mình

Khách vãng lai đã xóa
Nàng tiên cá
Xem chi tiết
Mất nick đau lòng con qu...
2 tháng 7 2019 lúc 18:42

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-1\right)\left(5-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le\frac{5}{2}\)

Mấy bài bn đăng tương tự :) 

Ngô Chi Lan
15 tháng 7 2020 lúc 17:19

Bài làm:

Ta có: \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-5\right|\)

\(A=\left|1-2x\right|+\left|2x-5\right|\)\(\ge\left|1-2x+2x-5\right|=\left|-4\right|=4\)

Dấu "=" xảy ra khi: \(\left(1-2x\right)\left(2x-5\right)\ge0\)

Giải BPT trên ra ta được \(\frac{5}{2}\ge x\ge\frac{1}{2}\)

Vậy \(Min\left(A\right)=4\Leftrightarrow\frac{5}{2}\ge x\ge\frac{1}{2}\)

Khách vãng lai đã xóa
Trần Ngọc Sơn
Xem chi tiết
Nguyễn Nhã Linh
Xem chi tiết
cụ nhất kokushibo
Xem chi tiết
Akai Haruma
11 tháng 7 2023 lúc 23:52

Bài 1:

a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.

$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$

Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$

Akai Haruma
11 tháng 7 2023 lúc 23:54

Bài 2:

a.

$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)

$\Rightarrow C\leq -6$

Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.

$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$

$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$

nguyễn ngọc minh ánh
Xem chi tiết
Bellion
25 tháng 9 2020 lúc 19:20

             Bài làm :

\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)

Vì (x-10)2 ≥ 0 với mọi x

\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)

Dấu "=" xảy ra khi

(x-10)2 = 0

<=> x-10=0

<=> x=10

Vậy GTNN của biểu thức là : 1920 <=> x=10

\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

Vì -(x-2)2 ≤ 0 với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảu ra khi :

x-2=0

<=> x=2

Vậy GTLN của biểu thức là -1 <=> x=2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 19:25

x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x

Dấu "=" xảy ra <=> x = 10 

Vậy GTNN của biểu thức = 1920 <=> x = 10

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra <=> x = 2

Vậy GTLN của biểu thức = -1 <=> x = 2

Khách vãng lai đã xóa
Ngo Tung Lam
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 9 2017 lúc 20:27

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 9 2017 lúc 20:18

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

Capricorn
Xem chi tiết
Minh Hiền
11 tháng 6 2017 lúc 14:59

a. x2 - 3x + 5

= x2 - 2.x.3/2 + 9/4 + 5 - 9/4

= (x - 3/2)2 + 11/4 \(\ge\)11/4

Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2

b. 4x2 + 4x + 2

= (2x)2 + 2.2x.1 + 1 + 1

= (2x + 1)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2

c. x2 - 20x + 101

= x2 - 2.x.10 + 100 + 1

= (x - 10)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.