Tính:
a) ( a+b+c)2
b) (a+b-c)2
c) (a-b-c)2
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
cho a^2/a+b +b^2/b+c +c^2/c+a=2021 tính M=b^2/a+b+c^2/b+c +a^2/c+a
1) Tính giá trị của biểu thức
a) (a+b+c)^2+(a-b-c)^2 tại b=1,c=-2,a=2021
b) (a+b+c)^2+(a+b-c)^2-2.(a+b)^2 tại c=-10
c) (a+b+c)^2+(-a+b+c)^2+(a-b+c)^2+(a+b-c)^2 với a^2+b^2+c^2=10
Cho a, b, c \(\ne0\) và a+b+c=0. Tính :
A= \(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Ta có: \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\Rightarrow a^2-2bc=b^2+c^2\)
\(\Rightarrow a^2-b^2-c^2=a^2-a^2+2bc=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Lại có: \(a+b+c=0\Rightarrow-a=b+c\)
\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)=3abc\left(b+c=-a\right)\)
=> \(A=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
cho a,b,c khác 0 và thỏa mãn a^2+b^2+c^2=(a+b+c)^2.Tính a+b/c + b+c/a + a+c/b
a)Cho a+b+c=1 và 1/a+1/b+1/c =0.Tính a^2+b^2+c^2
b)Cho a+b+c=2014 và 1/a+b + 1/a+c + 1/b+c=1/2014.Tính S=a/b+c + b/a+c + c/a+b
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
a) cho \(a+b+c=2\).tính \(A=\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(a+c\right)^2}\)
b)cho \(a+b+c=0\).tính \(B=\frac{a^2+b^2+c^2}{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}\)
c) cho \(a+b+c=0;abc\ne0\)tính \(M=\frac{a^3}{b^2+c^2-a^2}+\frac{b^3}{c^2+a^2-b^2}+\frac{c^3}{a^2+b^2-c^2}\)
ý a bạn có chắc viết đề bài đúng không
cho a+b+c khác 0 và a^2/b+c + b^2/c+a + c^2/a+b =0 . Tính B = a /b+c + b /c+a + c /a+b
bt làm thì đăng lên làm j vậy.Chắc đăg câu hỏi lên xog rùi tra mạng.Lúc tìm thấy kq rùi thì lại vô câu hỏi của mk bảo bt rồi chớ j
Cho a,b,c thoả mãn: a^2/b+c +b^2/c+a +c^2/a+b =3 và a/b+c +b/c+a +c/a+b =2 Tính giá trị của P=a+b+c
Tính:
a) (a + b + c)2
b) (a + b – c)2
c) (a – b – c)2
a) (a + b + c)2
= [(a + b) + c]2
= (a + b)2 + 2(a + b)c + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac
b) (a + b – c)2
= [(a + b) – c]2
= (a + b)2 – 2(a + b)c + c2
= a2 + 2ab + b2 – 2ac – 2bc + c2
= a2 + b2 + c2 + 2ab – 2bc – 2ac
c) (a – b – c)2
= [(a – b) – c]2
= (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.