Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Taeyeon
Xem chi tiết
Hà Linh Nguyễn
Xem chi tiết
Dương Gia Nhi
Xem chi tiết
Đào Đức Mạnh
6 tháng 8 2015 lúc 16:10

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}-1=\frac{c}{d}-1=>\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)

Hồ Phương Chi
Xem chi tiết
Đinh Đức Hùng
22 tháng 1 2017 lúc 10:02

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (1) => a = bk ; c = dk . Thay vào \(\frac{a+c}{b+d}\) ta được :

\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) (2)

Từ (1) ; (2) => \(\frac{a}{b}=\frac{a+c}{b+d}\) ( đpcm )

Hoàng Thị Ngọc Anh
22 tháng 1 2017 lúc 10:02

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)

\(\Rightarrow\) đpcm.

Dương Gia Nhi
Xem chi tiết
Đặng Thanh Thủy
6 tháng 8 2015 lúc 16:15

Ta có\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)

Jun Kai Wang
6 tháng 8 2015 lúc 16:03

Ta có : \(\frac{c}{d}=\frac{a}{b}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

                          \(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\) ( Đpcm)

 ****

 

Nhâm Bảo Minh
Xem chi tiết
Milako Usagi
Xem chi tiết
Trần Thanh Phương
5 tháng 10 2018 lúc 19:31

Áp dụng t/c của dãy tỉ số = nhau

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

Cái này chỉ áp dụng rồi đổi chỗ tử - mẫu thôi ko có j

Vì \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{d}{b}\)

=> \(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Chúc bn học tốt

Thong the DEV
5 tháng 10 2018 lúc 19:33

Ok

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(Nhân chéo)

Xong!

Chúc bạn học tốt!

Đỗ Thế Hưng
Xem chi tiết
Phùng Minh Quân
13 tháng 2 2018 lúc 14:48

Ta có :

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Rightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)\(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau vào \(\left(1\right)\) ta có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{a+a}{c+c}=\frac{2a}{2c}=\frac{a}{c}\)\(\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau vào \(\left(1\right)\) ta có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{b+b}{d+d}=\frac{2b}{2d}=\frac{b}{d}\)\(\left(3\right)\)

Từ \(\left(2\right)\) và \(\left(3\right)\)suy ra \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)

Vậy từ tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)khác \(1\)ta có tỉ lện thức \(\frac{a}{b}=\frac{c}{d}\)

Adorable Angel
Xem chi tiết
Nguyễn Huy Tú
12 tháng 6 2017 lúc 14:48

Giải:

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

Vậy...

Nguyễn Ngọc Quân
12 tháng 6 2017 lúc 15:12

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)

Thay (1) vào:

\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)

Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)

Trịnh Văn Đại
9 tháng 10 2017 lúc 21:51

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất hoán vị ta được:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)