chứng tỏ biểu thức luôn dương A=(x-3)2+5
chứng tỏ biểu thức luôn dương A = 3+2|x+1|
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
Câu 9: Chứng tỏ với mọi giá trị x,y thuộc Q thì giá trị của biểu thức sau luôn luôn là số dương :
M=3[x2+1]+x2y2+y2-2 / [x+y]2+5
Câu10:Tìm cặp số nuyên dương x;y để biểu thức sau có giá trị dương
A=2x+2y-3 / x+y
Chứng tỏ rằng :
a) biểu thức x^2+x+3 luôn luôn có giá trị dương với mọi giá trị của x
b) biểu thức -2x^2+3x-8 luon khong nhan gia tri duong voi moi gia tri cua x
chứng tỏ biểu thức luôn dương với mọi giá trị của biến A=2x^2-4x+5
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Chứng tỏ biểu thức B= a4 - 2a3 + 2a2 - 2a+ 5 luôn dương với mọi giá trị của a
\(B=a^4-2a^3+2a^2-2a+5\)
\(=a^4-2a^3+a^2+a^2-2a+1+4\)
\(=\left(a^2-a\right)^2+\left(a-1\right)^2+4\ge4>0\left(đpcm\right)\)
Chứng tỏ biểu thức A luôn dương với mọi x,y
\(A=x^2-4xy-2y+2+5y^2\)
(x^2-2xy+y^2)+(y^2+2y+1)+3y^2+1
=(x+y)^2+(y+1)^2+3y^2+1>1
vay A luon duong
A=x^2-4xy-2y+2+5y^2
=x^2-4xy+4y^2-2y+2+y^2
=(x-2y)^2+(y^2-2y+1)+1
=(x-2y)^2+(y-1)^2+1
ta có (x-2y)^2>/0 với mọi x,y
(y-1)^2>/0 với mọi x,y
1>0
=> (x-2y)^2+(y-1)^2+1 >0 với mọi x,y
=> A luôn duong với mọi x,y
Chứng tỏ biểu thức sau luôn dương với mọi giá trị của x :
A = 4x2 - 12x + 15
\(A=4x^2-12x+15=\left(2x\right)^2-12x+9+6\)
\(=\left(2x-3\right)^2+6\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)\(\Rightarrow A\ge6\)
\(\Rightarrow\)A luôn dương