Ta có: \(a^3+b^3=a^5+b^5\)
Từ đó hãy cứng minh rằng: \(a^2+b^2\le1+ab\)
Help me !!!
Lẹ nha
Cxho a,b > 0 thỏa \(a^3+b^3=a^5+b^5\)
Chứng minh rằng :\(a^2+b^2\le1+ab\)
Có: \(\left(a^2+b^2\right)\left(a^5+b^5\right)=a^5+b^5+a^2b^3+a^3b^2\)
\(\Leftrightarrow\)\(a^2+b^2=\frac{a^2b^2\left(a+b\right)}{a^5+b^5}+1=\frac{a^2b^2\left(a+b\right)}{a^3+b^3}+1=\frac{a^2b^2}{a^2-ab+b^2}+1\le ab+1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Cho a,b là các số dương thỏa mãn \(a^3+b^3=a^5+b^5\)
Chứng minh rằng : \(a^2+b^2\le1+ab\)
Theo bất đẳng thức Cô-si ta có
a^5 + a >= 2√(a^5.a);
hay a^5 >= 2a^3 - a.
Chứng minh tương tự, ta cũng có
b^5 >= 2b^3 - b.
Cộng hai bất đẳng thức theo vế ta được
a^5 + b^5 >= 2a^3 + 2b^3 - a - b,
hay a^3 + b^3 >= 2a^3 + 2b^3 - a - b,
hay a^3 + b^3 <= a + b (*).
Vì a^3 + b^3 = (a + b)(a^2 - ab + b^2) nên bất đẳng thức (*) tương đương với
(a + b)(a^2 - ab + b^2) <= a + b,
hay a^2 - ab + b^2 <= 1,
hay a^2 + b^2 <= ab + 1.
Dấu bằng xảy ra khi a = b = 1
Cho a,b là các số dương thỏa mãn : \(a^3+b^3=a^5+b^5\) Chứng minh rằng : \(a^2+b^2\le1+ab\)
0\(0\le a\le b\le c\le1\)chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< 2\)HELP ME!!!!!!!!!!!!!!!!
cho a,b>0 thỏa mãn a3+b3 =a5+b5.chứng minh \(a^2+b^2\le1+ab\)
A=5+5^2+5^2+5^3+...+5^100
B=5+5^2+5^3+...+5^101
chứng minh rằng A,B không là số cính phương
giúp mình nhanh nhé thứ hai mình cần rồi(help me please!)
Cho các số a,b,c thỏa \(0\le a;b;c\le1\)
Chứng minh rằng:
a) \(a+b+c-ab-ac-bc\le1\)
b) \(a+b^2+c^3-ab-bc-ac\le1\)
cho a ,b là số dương thỏa mãn \(a^3+b^3=a^5+b^5\)
CMR : \(a^2+b^2\le1+ab\)
Bài Làm
\(a^2+b^2-ab\le1< =>a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\)\(\Leftrightarrow a^6+b^6+2a^3b^3\le a^5b+ab^5+a^6+b^6\)
\(\Leftrightarrow2a^3b^3\le ab^5+a^5b\)\(\Leftrightarrow ab\left(a^2-b^2\right)^{^2}\ge0\)\(Luondungvoimoia,b>0\)
#)Giải :
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)
P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )
A=1+5+52+.......+519
bạn hãy chứng minh rằng A chia hết cho 6
nhanh lên nha help me ...!!!
=> A=(1+5)+(52+53)+......+(518+519)
=> A=1(1+5)+52(1+5)+.......+518(1+5)
= A=1.6+52.6+.........+518.6
=> A=6.(1+52+......+518)
Vậy A chia hết cho 6 ĐPCM
A=(1+5)+(5^2+5^3)+...+(5^18+5^19)
A=6+5^2*(1+5)+...+5^18*(1+5)
A=6+5^2*6+...+5^18*6
A=6*(1+5^2+....+5^18)chia het cho 6)