Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đức Duy
Xem chi tiết
Xoài
Xem chi tiết
Vân Anh Huỳnh Lê
Xem chi tiết
Tô Hà Thu
8 tháng 11 2021 lúc 15:38

ủa , ai z ???

Kậu...chủ...nhỏ...!!!
8 tháng 11 2021 lúc 15:39

?

An Chu
8 tháng 11 2021 lúc 15:40

OK

Phan Thị Thu Thảo
Xem chi tiết
Nguyễn Thanh Hà
Xem chi tiết
Trần Thảo Vy
6 tháng 5 2021 lúc 22:17

hình bạn tự vẽ nhé

a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A

=> góc BAC = 90 độ và AB=AC

Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)

=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

mà AB=AC (cmt)

=> Tứ giác ABIC là hình vuông (dấu hiệu nhận  biết hình vuông)

=> AI là phân giác góc BAC

Khách vãng lai đã xóa
Nguyễn Linh
Xem chi tiết
Ánh Mạch
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 23:11

Câu 1: 

TXĐ: D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

Đạt Trần Thọ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 8:30

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

Đạt Trần Thọ
10 tháng 12 2023 lúc 6:03

loading...  

Phạm Thị Tuyết Mai
Xem chi tiết
BTLD Nguyễn Thị Như Tran...
4 tháng 7 2016 lúc 6:53

mk mới hok jop 6 à

Bùi Thị Vân
4 tháng 7 2016 lúc 7:48


có \(\left|a\right|< 1\),\(\left|b-1\right|< 10\)suy ra \(\left|a\right|.\left|b-1\right|< 10\Rightarrow\left|a\left(b-1\right)\right|< 10\Leftrightarrow\left|ab-a\right|< 10\)
                                                                                                                                      \(\Leftrightarrow-10< ab-a< 10\)(1)
có \(\left|a-c\right|< 10\Leftrightarrow-10< a-c< 10\)(2)
 cộng lần lượt các vế của (1) và (2) ta có \(-10+\left(-10\right)< ab-a+a-c< 10+10\Leftrightarrow-20< ab-c< 20\)
 suy ra \(\left|ab-c\right|< 20\)

Nguyễn Khánh Dương
4 tháng 7 2016 lúc 8:54

Nhìn đề mk chẳng hỉu j